Surface roughness and textural image analysis, particle size and stability of microparticles obtained by microfluidization of soy protein isolate aggregates suspensions
Abstract
Protein microparticles are of interest in the development of low-fat foods as stabilizing agents and, for their production, it is important to consider the influence of the processing conditions on stability and size of particles. In the present study, the characteristics of microparticles of soy protein isolate (SPI) obtained by microfluidization (MF) (110 MPa and 3 MF cycles) of aggregates obtained by heat treatment (95 °C for 15 min) and different pH values (3 , 5, 7 and 9). The results of particle size, zeta potential and turbiscan stability index (TSI) showed that the least stable microparticles in suspension were obtained at pH 5, due to their proximity to the average isoelectric point of soy proteins (4.5). In contrast, the most stable microparticles in suspension were obtained at pH 9, presenting small particle sizes (398.35 ± 4.19nm) and a low TSI (0.8 ± 0.08). By means of atomic force microscopy (AFM) it was possible to observe the breakdown of the aggregates for the formation of microparticles during the microparticulation process. Surface roughness and image texture analyses allowed evaluating the effect of MF on the surface of the microparticles. The most relevant descriptor for the characterization of microparticlers was the second angular moment whereas contrast, correlation, inverse difference moment, entropy, and fractal dimension did not correlate with the characteristics of the images in the whole range of operating conditions given that their calculation algorithms are not sensitive enough to detect the small variations in roughness of the samples. The best conditions for production of microparticels were 3 cycles of MF and pH 9 which gave place to homogenous and stable systems.
References
Achouri, A., Boye, J.I., Yaylayan, V.A. and Yeboah, F.K. (2005). Functional properties of glycated soy 11s glycinin. Journal of Food Chemistry and Toxicology 70(4), 269–274. https://doi.org/10.1111/j.1365-2621.2005.tb07172.x
Acosta-Domínguez, L., Hernández-Sánchez, H., Gutiérrez-López, G. F., Alamilla-Beltrán, L. and Azuara, E. (2016). Modification of the soy protein isolate surface at nanometric scale and its effect on physicochemical properties. Journal of Food Engineering 168, 105–112. https://doi.org/10.1016/j.jfoodeng.2015.07.031
Alvarado-González, J.S., Chanona-Pérez, J.J., Welti-Chanes, J. S., Calderón-Domínguez, G., Arzate-Vázquez, I., Pacheco-Alcalá, S. U., Garibay-Febles, V. and Gutiérrez-López, G. F. (2012). Optical, microstructural, functional and nanomechanical properties of aloe vera gel / gellan gum edible films. Revista Mexicana de Ingeniería Química, 11(2), 193-210. http://rmiq.org/iqfvp/Pdfs/Vol.%2011,%20No.%202/Alim1/Alim1.pdf
AOAC (Association of Official Agricultural Chemists) (1984). Official Methods of Analysis. Kjeldahl method (2.062). 14th edition. Washington D.C., USA.
Arzate-Vázquez, I., Chanona-Pérez, J. J., Calderón-Domínguez, G., Terres-Rojas, E., Garibay-Febles, V., Martínez-Rivas, A. and Gutiérrez-López, G.F. (2012). Microstructural characterization of chitosan and alginate films by microscopy techniques and texture image analysis. Carbohydrate Polymers 87(1), 289–299. https://doi.org/10.1016/j.carbpol.2011.07.044
Barrera, G.N., Calderón-Domínguez, G., Chanona-Pérez, J., Gutiérrez-López, G.F., Leóna, A.E. and Ribottab, P.D., (2013). Evaluation of the mechanical damage on wheat starch granules by SEM, ESEM, AFM and texture image analysis. Carbohydrate Polymers 98 (2), 1449–1457. https://doi.org/10.1016/j.carbpol.2013.07.056
Bernewitz, R., Guthausen, G., and Schuchmann, H.P. (2011). NMR on emulsions: characterization of liquid dispersed systems. Magnetic Resonance in Chemistry 49, 93-104. https://doi.org/10.1002/mrc.282
Bildyukevich, A. V., Plisko, T. V., Lipnizki, F., and Pratsenko, S. A. (2020). Correlation between membrane surface properties, polymer nature and fouling in skim milk ultrafiltration. Colloids and Surfaces A: Physicochemical and Engineering Aspects 605, 125387. https://doi.org/10.1016/j.colsurfa.2020.125387
Cano-Sarmiento, C., Alamilla-Beltrán, L., Azuara-Nieto, E., Hernández-Sánchez, H., Téllez- Medina, D. I., Jiménez- Martínez, C. and Gutiérrez-López, G. F. (2015). High shear methods to produce nano-sized food related to dispersed systems. In: Food Nanoscience and Nanotechnology (Hernández-Sánchez H., Gutiérrez-López G. eds). Pp 145-161. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-13596-0_8
Chen, W., Yuan, S., Hsiao, H. and Hsieh, C. (2001). Algorithms to estimating fractal dimension of texture images. IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 3. Pp. 1541–1544. Hong Kong, China.
Chen, X., Xu, X. and Zhou, G. (2016). Potential of high-pressure homogenization to solubilize chicken breast myofibrillar proteins in water. Innovative Food Science Emerging Technology 33, 170–179. https://doi.org/10.1016/j.ifset.2015.11.012
Chung, C., Degner, B. and McClements, D.J. (2014). Development of reduced-calorie foods : microparticulated whey proteins as fat mimetics in semi-solid food emulsions. Food Research International 56, 136–45. https://doi.org/10.1016/j.foodres.2013.11.034
Dissanayake, M., Alan L. K. and Vasiljevic, T. (2010). Gelling properties of microparticulated whey proteins. Journal of Agricultural and Food Chemistry 58(11), 6825–32. https://doi.org/10.1021/jf1009796
Dissanayake M., and Vasiljevic T. (2009). Functional properties of whey proteins affected by heat treatment and hydrodynamic high-pressure shearing. Journal of Dairy Science, 92(4), 1387–1397. https://doi.org/10.3168/jds.2008-1791
Formulation Smart Scientific Analysis (2021). Static multiple light scattering (SMLS).
Available at: https://www.formulaction.com/en/productsandtechnologies/technologies/static-multiple-light-scattering-s-mls. Accessed: January 25, 2021.
Gong, Kuijie, Lirong Chen, Haiyong Xia, Hongcui Dai, Xiaoyue Li, Linlin Sun, Weilin Kong, and Kaichang Liu. (2019). Driving forces of disaggregation and reaggregation of peanut protein isolates in aqueous dispersion induced by high-pressure microfluidization. International Journal of Biological Macromolecules 130, 915–21. https://doi.org/10.1016/j.ijbiomac.2019.02.123
Gong, K., Deng, L., Shi, A., Liu, H., Liu, L., Hui, H., Adhikari, B. and Wang, Q. (2017). High-pressure microfluidisation pretreatment disaggregate peanut protein isolates to prepare antihypertensive peptide fractions. International Journal of Food Science and Technology, 52(8), 1760–1769. https://doi.org/10.1111/ijfs.13449
González-Cruz, L., Juárez-Goiz, J., Teniente-Martínez, G., Acosta-García, G., Flores-Martínez, N., and Bernardino-Nicanor, A. (2020). Structural changes in the proteins from two species of the genus vigna by effect of different treatments. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 333-347. https://doi.org/10.24275/rmiq/Alim1550
Granillo-Guerrero, V.G., Villalobos-Espinosa, J.C., Alamilla-Beltrán, L., Téllez-Medina, D.I., Hernández-Sánchez, H., Dorantes-Álvarez, L. and Gutiérrez-López, G.F. (2017). Optimization of the formulation of emulsions prepared with a mixture of vitamins D and E by means of an experimental design simplex centroid and analysis of colocalization of its components. Revista Mexicana de Ingeniería Química 16, 816-872. http://rmiq.org/ojs311/index.php/rmiq/article/view/967
Hernández-Carrión, M., Hernando, I., Sotelo-Díaz, I., Quintanilla-Carvajal, M. X. and Quiles, A. (2015). Use of image analysis to evaluate the effect of high hydrostatic pressure and pasteurization as preservation treatments on the microstructure of red sweet pepper. Innovative Food Science and Emerging Technologies 27, 69–78. https://doi.org/10.1016/j.ifset.2014.10.011
Hu, X., Zhao, M., Sun, W., Zhao, G. and Ren, J. (2011). Effects of microfluidization treatment and transglutaminase cross-linking on physicochemical, functional, and conformational properties of peanut protein isolate. Journal of Agricultural and Food Chemistry 59(16), 8886–8894. https://doi.org/10.1021/jf201781z
Iordache, M. and Jelen, P. (2003). High pressure microfluidization treatment of heat denatured whey proteins for improved functionality. Innovation Food Science and Emerging Technologies 4, 367–376. https://doi.org/10.1016/S1466-8564(03)00061-4
Ipsen, R. (2017). Microparticulated whey proteins for improving dairy product texture International Dairy Journal 67, 73-79. https://doi.org/10.1016/j.idairyj.2016.08.009
Kang, W., Xu, B., Wang, Y., Li, Y., Shan, X., An, F. and Liu, J. (2011). Stability mechanism of W/O crude oil emulsion stabilized by polymer and surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects 384, 555-560. https://doi.org/10.1016/j.colsurfa.2011.05.017
Kasaai, M. R., Charlet, G., Paquin, P. and Arul, J. (2003). Fragmentation of chitosan by microfluidization process. Innovative Food Science & Emerging Technologies 4(4), 403-413. https://doi.org/10.1016/S1466-8564(03)00047-X
Keerati-U-Rai, Maneephan and Corredig, M. (2009). Effect of dynamic high pressure homogenization on the aggregation state of soy protein. Journal of Agricultural and Food Chemistry 57(9), 3556–62. https://doi.org/10.1021/jf803562q
Laddi, A., Sharma, S., Kumar, A. and Kapur, P. (2013). Classification of tea grains based upon image texture feature analysis under different illumination conditions. Journal of Food Engineering. 115(2), 226–231. https://doi.org/10.1016/j.jfoodeng.2012.10.018
Laneuville, S. I., Paquin, P. and Turgeon, S. L. (2000). Effect of preparation conditions on the characteristics of whey protein-xanthan gum complexes. Food Hydrocolloids 14(4), 305–14. https://doi.org/10.1016/S0268-005X(00)00003-5
Li, T., Wang., L., Zhang, X., Geng, H., Xue, W. and Chen, Z. (2020). Assembly behavior, structural characterization and rheological properties of legume proteins based amyloid fibrils. Food Hydrocolloids 111, 106396. https://doi.org/10.1016/j.foodhyd.2020.106396
Li, Y.-T., Chen, M.-S., Deng, L.-Z., Liang, Y.-Z., Liu, Y.-K., Liu, W., Chen, J. and Liu, C.-M., (2020).Whole soybean milk produced by a novel industry-scale micofluidizer system without soaking and filtering. Journal of Food Engineering 291, 110228. https://doi.org/10.1016/j.jfoodeng.2020.110228.
Lin, L., Perets, A., Har-el, Y.E., Varma, D., Li, M., Lazarovici, P., Woerdeman, D.L. and Lelkes, P.I. (2013). Alimentary 'green' proteins as electrospun scaffolds for skin regenerative engineering. Journal of Tissue Engineering and Regenerative Medicine 7(12), 994-1008. doi: https://doi.org/10.1002/term.1493
Liu, C.-M., Zhong, J.-Z., Liu, W., Tu, Z.-C., Wan, J., Cai, X.-F. and Song, X.-Y. (2011). Relationship between functional properties and aggregation changes of whey protein induced by high pressure microfluidization. Journal of Food Science, 76(4), E341–E347. https://doi.org/10.1111/j.1750-3841.2011.02134.x
Liu, F. and Tang, C. (2013). Soy protein nanoparticle aggregates as pickering stabilizers for oil-in-water emulsions. Journal of Agricultural and Food Chemestry 61 (37) 8888–8898 https://doi.org/ 10.1021/jf401859y
Liu, F. and Tang, C. (2016) Soy glycinin as food-grade pickering stabilizers: part. II. improvement of emulsification and interfacial adsorption by electrostatic screening. Food Hydrocolloids 60, 620–30. https://doi.org/10.1021/jf401859y
Liu, H. H. and Kuo, M.-I. (2016). Ultra high pressure homogenization effect on the proteins in soy flour. Food Hydrocolloids, 52, 741–748. https://doi.org/0.1016/j.foodhyd.2015.08.018
Liu, W., Zhang, Z. Q., Liu, C. M., Xie, M. Y., Tu, Z. C., Liu, J. H. and Liang, R. H. (2010). The effect of dynamic high-pressure microfluidization on the activity, stability, and conformation of trypsin. Food Chemistry 123 (3), 616–621. https://doi.org/10.1016/j.foodchem.2010.04.079
Madadlou, A., Juliane F., Stephane P. and Didier, D. (2018). Encapsulation of β-lactoglobulin within calcium carbonate microparticles and subsequent in situ fabrication of protein microparticles. Food Hydrocolloids 84, 38–46. https://doi.org/10.1016/S0268-005X(00)00003-5
Malvern Panalytical (2021). Dynamic light scattering (DLS). Available at: https://www.malvernpanalytical.com/en/products/technology/light-scattering/dynamic-light-scattering. Accessed: January 25, 2021.
Martínez, K. D., Vykundeshwari G., Pilosof A. M.R. and Harte, F. M. (2011). Effect of dynamic high-pressure treatment on the interfacial and foaming properties of soy protein isolateehydroxypropylmethylcelluloses systems. Food Hydrocolloids 25, 1640-1645. https://doi.org/10.1016/j.foodhyd.2011.02.013
Monroy-Rodríguez I., Monroy-Villagrana A., Cornejo-Mazón M., García-Pinilla S., Hernández-Sánchez H. and Gutiérrez-López G.F. (2020) Microfluidization in nano-food engineering. In: Nano-food Engineering, (Hebbar U., Ranjan S., Dasgupta N., Kumar Mishra R. eds). Pp 153-176. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-44552-2_6
Monroy-Villagrana, A., Cano-Sarmiento, C., Alamilla-Beltrán, L., Hernández-Sánchez, H. and Gutiérrez-López, G. (2014). Coupled taguchi-RSM optimization of the conditions to emulsify a-tocopherol in an arabic gum-maltodextrin matrix by microfluidization. Revista Mexicana de Ingeniería Química, 13(3), 1-10. http://rmiq.org/iqfvp/Pdfs/Vol.%2013,%20No.%203/Alim3/RMIQTemplate.pdf
Oboroceanu, D., Wang, L., Kroes-Nijboer, A., Brodkorb, A., Venema, P., Magner, E. and Auty, M. A. E. (2011). The effect of high pressure microfluidization on the structure and length distribution of whey protein fibrils. International Dairy Journal 21(10), 823–30. https://doi.org/10.1016/j.idairyj.2011.03.015
Ou, X., Pan, W. and Xiao, P. (2014). In vivo skin capacitive imaging analysis by using grey level co-occurrence matrix (GLCM). International Journal of Pharmaceutics 460(1–2), 28–32. https://doi.org/10.1016/j.ijpharm.2013.10.024
Peles, Z., Binderman, I., Berdicevsky, I. and Zilberman, M. (2012). Soy protein films for wound-healing applications: antibiotic release, bacterial inhibition and cellular response. Journal of Tissue Engineering and Regenerative Medicine 7(5),401-12. https://doi.org/10.1002/term.536.
Pereyra-Castro, S., Pérez-Pérez, V., Hernández-Sánchez, H., Jiménez-Aparicio, A., Gutiérrez-López, G. and Alamilla-Beltrán, L. (2019). Effect of composition and homogenization pressure of chia oil emulsions elaborated by microfluidization. Revista Mexicana De Ingeniería Química 18(1), 69-81. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/Pereyra
Qi. X., Dond, Y., Wang, H., Wang C. and Li, F. (2017). Application of Turbiscan in the homoaggregation and heteroaggregation of copper nanoparticles. Colloids and Surfaces A 535, 96-104. DOI: https://doi.org/10.1016/j.colsurfa.2017.09.015
Qiao, J., Ngadi, M. O., Wang, N., Gariépy, C. and Prasher, S. O. (2007). Pork quality and marbling level assessment using a hyperspectral imaging system. Journal of Food Engineering 83(1), 10–16. https://doi.org/10.1016/j.jfoodeng.2007.02.038
Quintanilla-Carvajal, M. X., Meraz-Torres, L. S., Alamilla-Beltrán, L., Chanona-Pérez, J. J.,Terres-Rojas, E., Hernández-Sánchez, H., Jimenez-Aparicio, A.R. and Gutierrez-López G.F. (2011). Morphometric characterization of spray-dried microcapsules before and after a-tocopherol extraction. Revista Mexicana de Ingenieria Quimica 10, 301–312. http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1674
Shen, L. and Tang, C. H. (2012). Microfluidization as a potential technique to modify surface properties of soy protein isolate. Food Research International 48(1), 108–118. https://doi.org/10.1016/j.foodres.2012.03.006
Sivchenko, N., Kvaal, K. and Ratnaweera., H. (2016). Evaluation of image texture recognition techniques in application to wastewater coagulation. Cogent Engineering 3, 1206679. https://doi.org/10.1080/23311916.2016.1206679
Song, X., Chengjun Z., Feng F., Zhilin C. and Qinglin W. (2013). Effect of high-pressure homogenization on particle size and film properties of soy protein isolate. Industrial Crops and Products 43(1), 538–44. https://doi.org/10.1016/j.indcrop.2012.08.005
Sun, C., Lei D., Fuguo L. and Yanxiang G. (2016) Dynamic high pressure microfluidization treatment of zein in aqueous ethanol solution. Food Chemistry 210, 388–95. https://doi.org/10.1016/j.foodchem.2016.04.138
Tang, C.-H., Xiao, Y.-W., Xiao, Q.-Y. and Lin, L. (2009). Formation of soluble aggregates from insoluble commercial soy protein isolate by means of ultrasonic treatment and their gelling properties. Journal of Food Engineering 92(4), 432–37. https://doi.org/10.1016/j.jfoodeng.2008.12.017
Tang C.H. and Liu F. (2013) Cold, gel-like soy protein emulsions by microfluidization: Emulsion characteristics, rheological and microstructural properties, and gelling mechanism. Food Hydrocolloids, 30(1), 61–72. https://doi.org/10.1016/j.foodhyd.2012.05.008
Torres, I. C., Janhøj, T., Mikkelsen, B.Ø. and Ipsen, R. (2011). Effect of microparticulated whey protein with varying content of denatured protein on the rheological and sensory characteristics of low-fat yoghurt. International Dairy Journal 21, 645–655. https://doi.org/10.1016/j.idairyj.2010.12.013
Villalobos-Castillejos, F., Granillo-Guerrero, V. G. and Diana, E. Alamilla-Beltrán L., Gutiérrez-López, G. F., Monroy-Villagrana, A. and Jafari, S.M. (2018). Fabrication of nanoemulsions by microfluidization. In: Nanoemulsions formulation, applications, and characterization (Seid Mahdi Jafari, David Julian McClements, eds). Pp 207-232. Academic Press. https://doi.org/10.1016/B978-0-12-811838-2.00008-4.
Villalobos-Espinosa, J., Quintanilla-Carvajal, M., Granillo-Guerrero, V., Alamilla-Beltrán, L., Hernández-Sánchez, H., Perea-Flores, M., Azura-Nieto, E. and Gutiérrez-López, G. (2019). Effect of two-fluid nozzles on the stability characteristics of emulsions prepared by a high-energy method (microfluidization). Revista Mexicana De Ingeniería Química 18(1), 165-80. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/Villalobos
Wen, Y., Xu, Z., Liu, Y., Corke, H. and Sui, Z. (2020). Investigation of food microstructure and texture using atomic force microscopy: A review. Comprehensive Reviews in Food Science and Food Safety 19(5), 2357–2379. https://doi.org/10.1111/1541-4337.12605
Yang, X., Beyenal, H., Harkin, G. and Lewandowski, Z. (2000). Quantifying biofilm structure using image analysis. Journal of Microbiological Methods 39(2), 109–119. https://doi.org/10.1016/s0167-7012(99)00097-4
Zhong, J. Z., Liu, W., Liu, C. M., Wang, Q. H., Li, T., Tu, Z. C., Cai, X.C. and Xu, Y. J. (2012). Aggregation and conformational changes of bovine β-lactoglobulin subjected to dynamic high-pressure microfluidization in relation to antigenicity. Journal of Dairy Science 95(8), 4237–4245. https://doi.org/10.3168/jds.2012-5333

Copyright (c) 2021 Revista Mexicana de Ingeniería Química

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By publishing your paper in our journal you are also granting it the copyright of the information that it contains.