Voltage production and simultaneous municipal wastewater treatment in microbial fuel cells performed with Clostridium strains

  • J. Dorazco-Delgado
  • J.H. Serment-Guerrero
  • S.M. Fernández-Valverde
  • M.C. Carreño-de-León
  • J.C. Gómora Hernández Instituto Tecnológico de Toluca
Keywords: bioelectrochemistry, Clostridium bacteria, graphite cloth, microbial fuel cell, municipal wastewater

Abstract

Clostridium strains are known due to their capability to produce hydrogen and free electrons during their metabolism; however, voltage production and electric current generation by Microbial Fuel Cell (MFC) have not been deeply explored yet employing these microorganisms. In this paper we evaluated both voltage generation and Chemical Oxygen Demand (COD) reduction in municipal wastewater by one chamber MFC performed with graphite cloth electrodes and inoculated with Clostridium bifermentans, Clostridium sordellii and native bacteria. Clostridium strains grew properly on both Ravot medium and municipal wastewater reaching the maximum develops at 96 and 120 hours for bifermentans and sordellii respectively. Microbial growth kinetics determined by Gompertz modified model showed low lag times for all tests. Clostridium sordellii showed not only the maximum voltages but also the highest potential to remove organic matter from wastewater since COD diminished around 60% at the end of MFC’s operation. The addition of phosphate salts solution increased the removal of organic matter but was not efficient to generate voltage, moreover, the microorganisms present in wastewater were able to produce voltage but  the amount of organic matter removed by them were low. The maximum generated voltage, Power Density (PD), Volumetric Power Density (VPD) and Current Density (CD) values were observed in MFC inoculated with Clostridium sordelli and performed with wastewater with no buffer solution, they were; 0.372 V, 153.43 mW m-2, 1.73 W m-3 and 0.413 A m-2 respectively. Clostridium strains showed a high potential to reduce COD in wastewater generating green energy as by-product.

References

Alzate-Gaviria L., González K., Peraza I., García O., Domínguez-Maldonado J., Vázquez J., Tzec-Simá M., Canto-Canché B. (2010). Evaluación del desempeño e identificación de exoelectrógenos en dos tipos de celdas de combustible microbianas con diferente configuración en el ánodo. Interciencia 35, 19-25.

Ávila-Vera E., Alcántara-Díaz D., Roa-Morales G., Fernández-Valverde S. M. (2015). Co-culture specific bacteria for hydrogen production in organic waste in different culture media. Advances in Hydrogen Energy 2015, 2, 1.4.

Buitrón G., Pérez J. (2011). Producción de electricidad en celdas de combustible microbianas utilizando agua residual: Efecto de la distancia entre electrodos. Revista Especializada en Ciencias Químico-Biológicas 14, 5-11.

Chang S. H., Wu C. H., Wang R. C., Lin C. W. (2017). Electricity production and benzene removal from groundwater using low-cost mini tubular microbial fuel cells in a monitoring well.Journal of Environmental Management 193, 551-557.

Domínguez-Maldonado J. A., García-Rodríguez O., Aguilar-Vega M., Smit M., Alzate-Gaviria L. (2014). Reduction of cation exchange capacity in a microbial fuel cell and its relation to the power density.Revista Mexicana de Ingeniería Química 13, 527-538.

Gómora-Hernández J. C., Díaz A. D., Fernández-Valverde S. M., Hernández-Berriel M. C. (2016). Biohydrogen production by anaerobic digestion of corn cob and stem of faba bean hydrolysates.Proceedings of the XVI International Congress of the Mexican Hydrogen Society, Queretaro, Mexico.

Gómora-Hernández J. C., Serment-Guerrero J. H., Carreño-de-León M. C., Flores-Álamo N. (2020). Voltage production in a plant-microbial fuel cell using Agapanthus africanus. Revista Mexicana de Ingeniería Química 19, 227-237.

González-Paz J. R., Ordaz A., Jan-Roblero J., Fernández-Linares L. C., Guerrero-Barajas C. (2020). Sulfate reduction in a sludge gradually acclimated to acetate as the sole electron donor and its potential application as inoculum in a microbial fuel cell. Revista Mexicana de Ingeniería Química 19, 1053-1069.

Guadarrama-Pérez O., Hernández-Romano J., García-Sánchez L., Gutiérrez-Macías T., Estrada-Arriaga E. B. (2018). Simultaneous Bio-electricity and bio-hydrogen production in a continuous flow single microbial electrochemical reactor. Environmental Progress and Sustainable Energy 38, 1-8.

He L., Du P., Chen Y., Lu H., Cheng X., Chang B., Wang Z. (2017). Advances in microbial fuel cells for wastewater treatment.Renewable and Sustainable Energy Reviews 71, 388-403.

Hernández-Flores G., Poggi-Varaldo H. M., Solorza-Feria O., Ponce-Noyola M. T., Romero-Castañón T., Rinderknecht-Seijas N., Galíndez-Mayer J. (2015). Characteristics of a single chamber microbial fuel cell equipped with a low cost membrane. International Journal of Hydrogen Energy 40, 17380-17387.

Jung G. B., Fang L. H., Chiou M. J., Nguyen X. V., Su A., Lee W. T., Chang S. W., Kao I. C., Yu J. W. (2014). Effects of pretreatment methods on electrodes and SOFC performance.Energies 7, 3922-3933.

Kim I. S., Chae K. J., Choi M. J. Verstraete W. (2008). Microbial fuel cells: Recent advances, bacterial communities and application beyond electricity generation. EnvrionEng Res 13, 51-65.

Kumar S. S., Kumar V., Malyan S. K., Sharma J., Mathimani T., Maskarenj M. S., Ghosh P. C., Pugazhendhi A. (2019). Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams.Fuel 254, 115526.

Liu Q., Zhang X., Yu L., Zhao Z., Tai J., Liu J., Qian G., Xu Z. P. (2011). Fermentative hydrogen production from fresh leachate in batch and continuous bioreactors.Bioresource Technology 102, 5411-5417.

Logan B. E., Hamelers B., Rozendal R., Schröder U., Keller J., Verstraete W., Rabaey K. (2006). Microbial fuel cells: Methodology and Technology. Environmental Science & Technology 40, 5181-5192.

Martínez-Santacruz C. Y., Herrera-López D., Gutiérrez-Hernández R. F., Bello-Mendoza R. (2016). Tratamiento de agua residual doméstica mediante un reactor RAFA y una celda microbiana de combustible. Rev. Int. Contam. Ambien. 32, 267-279..

Mateo S., Mascia M., Fernández-Morales F. J., Rodrigo M. A., Di-Lorenzo M. (2019). Assessing the impact of design factors on the performance of two miniature microbial fuel cells. Electrochimica Acta 297, 297-306.

Mora C. A., Bravo M. E. (2017). Bacterial diversity associated with anodic biofilms in microbial fuel cells fed with wastewater. Acta Biológica Colombiana 22, 77-84.

Naureen Z., Al Matani A. R., Al Jabri M. N., Al Housni S. K., Gilani S. A., Mabood F., Farooq S., Hussain J., Al Harrasi A. (2016). Generation of electricity by electrogenic bacteria in a Microbial fuel cell powered by Waste water.Advances in Bioscience and Biotechnology 7, 329-335.

NMX-AA-004-SCFI-2013.(2013). Water Analysis.Determination of settleable solids in natural water, wastewaters and treated wastewaters.Test method. Economy Secretary, Mexico.

NMX-AA-005-SCFI-2013.(2013). Water Analysis.Measurement of extractables fats and oils in natural waters, wastewaters and treated wastewaters.Test method. Economy Secretary, Mexico.

NMX-AA-008-SCFI-2011.(2011). Water Analysis.Measurement of pH in natural waters, wastewaters and treated wastewaters. Test method. Economy Secretary, Mexico.

NMX-AA-026-SCFI-2010.(2010). Water Analysis.Determination of total Kjeldahl nitrogen in natural waters, wastewaters and treated wastewaters. Test method. Economy Secretary, Mexico.

NMX-AA-028-SCFI-2001.(2001). Water Analysis. Determination of the biochemical oxygen demand in natural, wastewaters (BOD5) and wastewaters treated. Test method. Economy Secretary, Mexico.

NMX-AA-030-SCFI-2012.(2012). Water Analysis.Determination of the Chemical Oxygen Demand in natural waters, wastewaters and treated wastewaters.Part 1. Opened reflux method. Economy Secretary, Mexico.

NMX-AA-042-SCFI-2015.(2015). Water Analysis.Enumeration of total coliform organisms, thermotolerantfecal coliform organisms and Escherichia coli. Multiple tube (Most probable number) method. Economy Secretary, Mexico.

NMX-AA-093-SCFI-2000.(2000). Water Analysis.Determination of electrolitical conductivity. Test method. Economy Secretary, Mexico.

Oh S. & Logan B. E. (2005). Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies.Water Research 39, 4673-4682.

Pérez-Rodríguez P., Martínez-Amador S. Y., Valdez-Aguilar L. A., Benavides. Mendoza A., Rodríguez-de la Garza J. A., Ovando-Medina V. M. (2018). Design and Evaluation of sequential bioelectrochemical system for municipal wastewater treatment and voltage generation.Revista Mexicana de Ingeniería Química 17, 145-154.

Ravot G., Olivier B., Magot M., Patel B., Crolet M., Fardeau M., Gacría J. (1995).Thiosulfate reduction: A physiological feature shared by members of the Thermotogales. Applied Environmental Microbiology 61, 2053-2055.

Serment G. J. H., Lara R. E. A., Becerril V. K., Suárez C. S., Ramírez D. N. (2017). Detección y aislamiento de microorganismos exoelectrógenos a partir de lodos del río Lerma, Estado de México, México. Rev. Int. Contam. Ambien. 33, 617-628.

Tatinclaux M., Gregoire K., Leininger A., Biffinger J. C., Tender L., Ramirez M., Torrents A., Kjellerup B. V. (2018). Electricity generation from wastewater using a floating air cathode microbial fuel cell. Water-Energy Nexus 1, 97-103.

Terry L. M., Wolin M. J. (1974). A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Applied Microbiology 27, 985-987.

Valdez-Ojeda R., Aguilar-Espinosa M., Gómez-Roque L., Canto-Canché B., Escobedo G. M. R. M., Domínguez-Maldonado J., Alzate-Gaviria L. (2014). Genetic identification of the bioanodeand biocathode of a microbial electrolysis cell. Revista Mexicana de Ingeniería Química 13, 573-581.

Wrana N., Sparling R., Cicek N., Levi D. B. (2010). Hydrogen gas production in a microbial electrolysis cell by electrohydrogenesis. Journal of Cleaner Production 18, 5105-5111.

Ya-Chieh L., Chen-Yeon C., Shu-Yii W., Chia-Ying T., Chia-Chi W., Chun-Hsiung H., Chiu-Yu L. (2012). Feasible pretreatment of textile wastewater for dark fermentative hydrogen production. International Journal of Hydrogen Energy 37, 15511-15517.

Wong Y. M., Wu T. Y., Ling T. C., Show P. L., Lee S. Y., Chang J. S., Ibrahim S., Juan J. C. (2018). Evaluating new bio-hydrogen producers: Clostridium perfringens strain JJC,Clostridium bifermentans strain WYM and Clostridium sp. Strain Ade. TY. Journal of bioscience and bioengineering, 125, 590-598.

Published
2021-07-04
How to Cite
Dorazco-Delgado, J., Serment-Guerrero, J., Fernández-Valverde, S., Carreño-de-León, M., & Gómora Hernández, J. (2021). Voltage production and simultaneous municipal wastewater treatment in microbial fuel cells performed with Clostridium strains. Revista Mexicana De Ingeniería Química, 20(3), IA2325. https://doi.org/10.24275/rmiq/IA2325
Section
Environmental Engineering

Most read articles by the same author(s)