Natural Mexican Clinoptilolite for ethanol dehydration: adsorption–regeneration experimental parameter determination and scaling–up at Pilot Plant

  • G. Leo-Avelino
  • G.R. Urrea-Garcia
  • J. Gómez-Rodríguez
  • S. Perez-Correa
  • M.G. Aguilar-Uscanga Tecnológico Nacional de México/Instituto tecnológico de Veracruz
Keywords: Ethanol, dehydration, adsorption, pilot plant, zeolites


The separation of ethanol-water azeotropic mixtures by adsorption-regeneration process using a natural Mexican Clinoptilolite has been studied. For this, the equilibrium parameters were determined from experimental data obtained at the laboratory level, which were used as a starting point for the calculation of a column at Pilot Plant scale. First, on the basis of experimental data from three different sizes of natural Mexican clinoptilolite (1-2, 3 and 5 mm) and two artificial ones with 1 and 3 mm, and from the application of standard fitting techniques: Langmuir, Freundlich and linear model parameters are calculated and compared. Then, the breakthrough curves (BTC) are determined for each zeolite in a packed bed, yielding that the adsorption and capability of natural clinoptilolite is similar to those presented by artificial zeolites. The regeneration method PSA was evaluated for each zeolite. Finally, according to the experimental parameters set, a calculation of a pilot-plant scale column is included for a validation and the results are compared with the results obtained at the laboratory scale, which presented a similar behavior. We can conclude that the use of Mexican zeolite in the ethanol dehydration process could be a good low-cost alternative that is easy to apply


Abdeen, F.R.H., Mel, M., Al-Khatib, M. and Azmi, A.S. (2011) Dehydration of ethanol on zeolite based media using adsorption process. Proc CUTSE Int Conf 3: 312-322.

Agartan, E., Gaddipati, M., Yip, Y., Savage, B. and Ozgen, C. (2018). CO2 storage in depleted oil and gas fields in the Gulf of Mexico. International Journal Greenhouse Gas Control 72, 38-48.

Al-Asheh, S., Banat F. and Al-Lagtah, N. (2004). Separation of ethanol-water mixtures using molecular sieves and biobased adsorbents. Chemical Engineering Research and Design 82 (7), 855 – 864.

Banat, F., Abu Al-Rub, F. and Simandl, J. (2000) Analysis of vapor–liquid equilibrium of ethanol – water system via headspace gas chromatography: effect of molecular sieves. Separation and purification Technology 18, 111–118.

Bourriot, S., Garnier, C. and Doublier, J.L. (1999). Phase separation, rheology and microstructure of micellar casein-guar gum mixtures. Food Hydrocolloids 7, 90-95.

Chopade, V.J., Khandetod, Y.P., Mohod, A.G. (2015) Dehydration of ethanol-water mixture using 3Å zeolite adsorbent. International Journal Emerging Technology Advance Engineering 5, 152-155.

Corro-Herrera, V.A., Gómez-Rodríguez, J., Hayward-Jones, P.M., Barradas-Dermitz, D.M., Gschaedler-Mathis, A.C. and Aguilar-Uscanga, M.G. (2018) Real‐time monitoring of ethanol production during Pichia stipitisNRRL Y‐7124 alcoholic fermentation using transflection near infrared spectroscopy. Engineering in life sciences 18, 643–653.

Delfín-Ruíz, M.E., Calderón-Santoyo, M., Ragazzo-Sánchez, J.A., Gómez-Rodríguez, J., López-Zamora, L. and Aguilar-Uscanga, M.G. (2020) Ethanol production from enzymatic hydrolysates optimized of Agave tequilana Weber var. azul and Agave karwinskii bagasses. Bioenergy research.

Foo, K. and Hameed, B. (2010) Insights into the Modeling of Adsorption Isotherm Systems. Chemical Engineering Journal 156, 2-10.

Gabruś, E., Nastaj, J., Tabero, P. and Aleksandrzak, T. (2015) Experimental studies on 3Å and 4Å zeolite molecular sieves regeneration in TSA process: Aliphatic alcohols dewatering-water desorption. Chemical Engineering Journal 259, 232-242.

Ivanova, E., Damgaliev, D. and Kostova, M. (2009) Adsorption separation of ethanol – water liquid mixtures by natural clinoptilolite. Journal of the University of Chemical Technology and Metallurgy 44, (3) 267 – 274.

Ivanova, E., Karsheva, M. (2010). Ethanol vapors adsorption on natural clinoptilolite – equilibrium experiments and modelling. Separation Purification Technology 73, 429-431.

Jeong, J., Jeon, H., Ko, K., Chung, B. and Choi, G. (2012) Production of anhydrous ethanol using various PSA (Pressure Swing Adsorption) processes in pilot plant. Renewable Energy 42, 41 – 45.

Kaminski, W., Marszalek, J. and Ciolkowska, A. (2008) Renewable energy source – Dehydrated ethanol. Chemical Engineering Journal 135, 95–102.

Karimi, S., Ghobadian, B., Omidkhah, M., Towfighi, J., Tavakkoli, M. (2016). Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite. Journal Advance Research 7, 435–444.

Krochta, E.M. (1990). Emulsion films on food products to control mass transfer. En: Food Emulsions and Foams, (E.L. Gaden y E. Doi, eds.), Pp. 65-78. Plenum Press, Nueva York.

Kuhns, R.J. and Shaw, G.H. (2018). Navigating the energy maze: The transition to a sustainable future. Ed. Springer.

Kupiec, K., Rakoczy, J., Zieliński, L. and Georgiou, A. (2018) Adsorption–desorption cycles for the separation of vapor – phase ethanol/water mixtures. Ads Sci Tech 26 (3): 209 – 224.

Morales-Martínez, J.L., Aguilar-Uscanga, M.G., Bolaños-Reynoso, E. and López-Zamora, L.. (2020). Optimization of chemical pretreatments using response surface methodology for 2nd generation ethanol production from coffee husk waste. Bioenergy research.

Partida-Sedas, G., Montes-García, N., Carvajal-Zarrabal, O., Lopez-Zamora, L., Gomez-Rodríguez, J. and Aguilar-Uscanga, M.G. (2016). Optimization of hydrolysis process to obtain fermentable sugars from sweet sorghum bagasse using a Box-Benken design. Sugar Tech 19 (3), 317–325.

Ribeiro, C.B., Martins, K.G., Gueri. M.V.D., Pavanello, G.P. and Schirmer, W.N. (2018). Effect of anhydrous ethanol/gasoline blends on performance and exhaust emissions of spark-ignited non-road engines. Environ Science Pollution Research.

Rumbo-Morales, J.Y., Lopez-Lopez, G., Alvarado, V.M., Valdez-Martinez, J.S., Sorcia-Vázquez, F.D.J. and Brizuela-Mendoza, J.A. (2018). Simulation and control of a pressure swing adsorption process to dehydrate ethanol. Revista Mexicana de Ingeniería Química 17 (3), 1051-1081.
doi: 10.24275/uam/izt/dcbi/revmexingquim/2018v17n3/Rumbo.

Smith, J.V. (1984). Definition of a zeolite. Zeolites 4,309–310.
Teo, W.K., Ruthven, D.M. (1986). Adsorption of water from aqueous ethanol using 3-Å molecular sieves. Industrial & Engineering Chemistry Process Design and Development 25, 17 – 21.

Tihmillioglu, F., Ulku, S. (1996) Use of clinoptilolite in ethanol dehydration. Separation Science and Technology 31(20), 2855 – 2865.

Wang, S., Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal 156, 11-24.

Yamamoto, T., Han Kim, Y., Chul–Kim, B., Endo, A., Thongprachan, N., Ohmori, T. (2012). Adsorption characteristics of zeolites for dehydration of ethanol: evaluation of diffusivity of water in porous structure. Journal of Chemistry Engineering 181–182, 443 – 448. https:// 10.1016/ j.cej.2011.11.110.
How to Cite
Leo-Avelino, G., Urrea-Garcia, G., Gómez-Rodríguez, J., Perez-Correa, S., & Aguilar-Uscanga, M. (2021). Natural Mexican Clinoptilolite for ethanol dehydration: adsorption–regeneration experimental parameter determination and scaling–up at Pilot Plant. Revista Mexicana De Ingeniería Química, 20(3), Proc2358: 1-11.
Process engineering