Microbial electrochemical system for obtaining value-added products using a halotolerant bioanode

  • E. González
  • B. Escobar-Morales
  • R. Tapia-Tussell
  • L. Alzate-Gaviria
Keywords: Microbial electrochemical systems, material recovery, halotolerant bioanodes.

Abstract

Microbial electrochemical systems (MES) cathodic reaction have stood out in the last decade, due to their versatility for the production of several chemical products of commercial interest using renewable energy. This work addresses the use of halotolerant microorganisms as bio-anodes with saline electrolytes (50 gL-1 NaCl), with a lower resistance and energy loss compared to freshwater systems. Likewise, it was demonstrated that it is possible to recover lanthanide in the form of oxides from a highly saline electrolyte. Being the first work in the literature to report the recovery of this metal from an aqueous solution in MES, opening a door for the development of MES specialized in the recovery of rare earth elements.

References

Alcázar-Medina, F.A., Núñez-Núñez, C.M., Villanueva-Fierro, I., Antileo, C., Proal-Nájera, J.B. (2020). Removal of heavy metals present in groundwater from a northern Mexico mining community using Agave tequilana Weber extracts. Revista Mexicana de Ingeniería Química 19, 1187-1199. https://doi.org/10.24275/rmiq/Bio1047.

Dehaine, Q., Filippov, L.O. (2015). Rare earth (La, Ce, Nd) and rare metals (Sn, Nb, W) as by-product of kaolin production, Cornwall: Part1: Selection and characterisation of the valuable stream. Minerals Engineering 76, 141–153. https://doi.org/10.1016/j.mineng.2014.10.006.

Fraggedakis, D., Bazant, M. Z. (2020). Tuning the stability of electrochemical interfaces by electron transfer reactions. The Journal of chemical physics 152 (18), 184703. https://doi.org/10.1063/5.0006833.

Gaffney, E.M., Simoska, O., Minteer, S.D. (2021). The Use of Electroactive Halophilic Bacteria for Improvements and Advancements in Environmental High Saline Biosensing. Biosensors 11(2), 48. https://doi.org/10.3390/bios11020048.

Gómora-Hernández, J. C., Serment-Guerrero, J. H., Carreño-de-León, M. C., & Flores-Alamo, N. (2020). Voltage Production in a plant microbial fuel cell using agapanthus africanus. Revista Mexicana de Ingeniería Química 19(1), 227-237. https://doi.org/10.24275/rmiq/IA542.

Hachiya, T., Sasaki, T., Tsuchida, K., Houda, H. (2009). Ruthenium oxide cathodes for chlor-alkali electrolysis. ECS Transactions 16, 31. https://doi.org/10.1149/1.3104645.

Hua, T., Li, S., Li, F., Zhou, Q., & Ondon, B. S. (2019). Microbial electrolysis cell as an emerging versatile technology: a review on its potential application, advance and challenge. Journal of Chemical Technology & Biotechnology 94(6), 1697-1711. https://doi.org/10.1002/jctb.5898.

Jha, M.K., Kumari, A., Panda, R., Kumar, J.R., Yoo, K., Lee, J.Y. (2016). Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 165, 2–26. https://doi.org/10.1016/j.hydromet.2016.01.035.

Jin, W., Zhang, Y. (2020). Sustainable electrochemical extraction of metal resources from waste streams: from removal to recovery. ACS Sustainable Chemistry & Engineering 8(12), 4693-4707. https://doi.org/10.1021/acssuschemeng.9b07007.

Jordens, A., Cheng, Y.P., Waters, K.E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering 41, 97–114. https://doi.org/10.1016/j.mineng.2012.10.017.

Kadier, A., Jain, P., Lai, B., Kalil, M.S., Kondaveeti, S., Alabbosh, K.F., Abu-Reesh, I., Mohanakrishna, G. (2020). Biorefinery perspectives of microbial electrolysis cells (MECs) for hydrogen and valuable chemicals production through wastewater treatment. Biofuel Research Journal 7(1), 1128-1142. https://doi.org/10.18331/BRJ2020.7.1.5.

Kumar, P., Bharti, R.P. (2019). Nanocomposite polymer electrolyte membrane for high performance microbial fuel cell: Synthesis, characterization and application. Journal of the Electrochemical Society 166(15), F1190. https://doi.org/10.1149/2.0671915jes/meta.

Luo, H.; Liu, G., Zhang, R., Bai, Y., Fu, S., Hou, Y. (2014). Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell. Journal of Hazardous Materials 270, 153–159. https://doi.org/10.1016/j.jhazmat.2014.01.050.

Massari, S., Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy 38, 36–43. https://doi.org/10.1016/j.resourpol.2012.07.001.

Modin, O., Wang, X., Wu, X., Rauch, S., Fedje, K.K. (2012). Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions. Journal of Hazardous Materials 235, 291–297. https://doi.org/10.1016/j.jhazmat.2012.07.058.

Morrison, W.M., Tang, R. (2012). China’s rare earth industry and export regime: economic and trade implications for the United States. Available at: https://fas.org/sgp/crs/row/R42510.pdf. Accessed: March 01, 2021.

Peeva, G., Yemendzhiev, H., Koleva, R., Nenov, V. (2020). CATALYST ASSISTED MICROBIAL FUEL CELLS. Journal of Chemical Technology and Metallurgy 55(4), 824-830. https://dl.uctm.edu/journal/node/j2020-4/20_19-192_p_824-830.pdf.

Pikalova, E., Bogdanovich, N., Kolchugin, A., Ermakova, L., Khrustov, A., Farlenkov, A., Bronin, D. (2021). Methods to increase electrochemical activity of lanthanum nickelate-ferrite electrodes for intermediate and low temperature SOFCs. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2021.01.226.

Pozo, G., Pongy, S., Keller, J., Ledezma, P., Freguia, S. (2017). A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage. Water Research 126, 411–420. https://doi.org/10.1016/j.watres.2017.09.058.

Prakash, G.K.S., Viva, F.A., Bretschger, O., Yang, B., El-Naggar, M., Nealson, K. (2010). Inoculation procedures and characterization of membrane electrode assemblies for microbial fuel cells. Journal of Power Sources 195, 111–117. https://doi.org/10.1016/j.jpowsour.2009.06.081.

Reimers, C.E., Girguis, P., Stecher, H.A., Tender, L.M., Ryckelynck, N., Whaling, P. (2006). Microbial fuel cell energy from an ocean cold seep. Geobiology 4, 123–136. https://doi.org/10.1111/j.1472-4669.2006.00071.x.

Reimers, C.E., Stecher, H.A., Westall, J.C., Alleau, Y., Howell, K.A., Soule, L., White, H.K., Girguis, P.R. (2007). Substrate degradation kinetics, microbial diversity, and current efficiency of microbial fuel cells supplied with marine plankton. Applied Environmental Microbiology 73, 7029–7040. https://doi.org/10.1128/AEM.01209-07.

Rimboud, M., Etcheverry, L., Barakat, M., Achouak, W., Bergel, A., Délia, M. L. (2021). Hypersaline microbial fuel cell equipped with an oxygen-reducing microbial cathode. Bioresource Technology 337, 125448. https://doi.org/10.1016/j.biortech.2021.125448.

Stamenkovic, V.R., Strmcnik, D., Lopes, P.P., Markovic, N.M. (2017). Energy and fuels from electrochemical interfaces. Nature Materials 16, 57–69. https://doi.org/10.1038/nmat4738.

Ter Heijne, A., Hamelers, H.V.M., De Wilde, V., Rozendal, R.A., Buisman, C.J.N. (2006). A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environmental Science Technology 40, 5200–5205. https://doi.org/10.1021/es0608545.

Torres, C.I., Krajmalnik-Brown, R., Parameswaran, P., Marcus, A.K., Wanger, G., Gorby, Y.A., Rittmann, B.E. (2009). Selecting Anode-Respiring Bacteria Based on Anode Potential: Phylogenetic, Electrochemical, and Microscopic Characterization. Environmental Science Technology 43, 9519–9524. https://doi.org/10.1021/es902165y.

Vanýsek, P. (2012). Electrochemical series. Handb. Chem. Phys. 93, 5–80. Available at: https://pdfs.semanticscholar.org/d69f/b8901fa978ef52cc489d4cac71bb23da9922.pd. Accessed: March 01, 2021.

Wang, Q., Huang, L., Pan, Y., Zhou, P., Quan, X., Logan, B.E., Chen, H. (2016). Cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd (II) removal and hydrogen evolution in bioelectrochemical systems. Bioresource Technology 200, 565–571. https://doi.org/10.1016/j.biortech.2015.10.084.

Xie, F., Zhang, T.A., Dreisinger, D., Doyle, F. (2014). A critical review on solvent extraction of rare earths from aqueous solutions. Minerals Engineering 56, 10–28. https://doi.org/10.1016/j.mineng.2013.10.021.

Zhang, Y., Angelidaki, I. (2014). Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Water Research 56, 11–25. https://doi.org/10.1016/j.watres.2014.02.031.

Zhou, Y., Phillips, R.J., Switzer, J.A. (1995). Electrochemical synthesis and sintering of nanocrystalline cerium (IV) oxide powders. Journal of the American Ceramic Society 78, 981–985. https://doi.org/10.1111/j.1151-2916.1995.tb08425.x.

Zhou, Y., Switzer, J.A. (1996). Growth of cerium (IV) oxide films by the electrochemical generation of base method. Journal of Alloys and Compounds 237, 1–5. https://doi.org/10.1016/0925-8388(95)02048-9.

Zhu, X., Yates, M.D., Hatzell, M.C., Rao, H.A., Saikaly, P.E., Logan, B.E. (2014). Microbial Community Composition Is Unaffected by Anode Potential. Environmental Science & Technology 48, 1352–1358. https://doi.org/10.1021/es404690q.

Published
2021-10-04
How to Cite
González, E., Escobar-Morales, B., Tapia-Tussell, R., & Alzate-Gaviria, L. (2021). Microbial electrochemical system for obtaining value-added products using a halotolerant bioanode. Revista Mexicana De Ingeniería Química, 20(3), Bio2390. https://doi.org/10.24275/rmiq/Bio2390

Most read articles by the same author(s)