Injection of emulsions into cores packed with Ottawa sand and Berea sandstone as a method for enhanced oil recovery

Keywords: EOR, Emulsion flooding, Packed cell, Sandstone core

Abstract

Two oil-in-water emulsion systems with drop size less than 6 µm were evaluated to be used as part of an enhanced oil recovery method. Oil recovery tests were run through a forced imbibition study simulating secondary and tertiary oil recovery processes in porous media such as packed cells with Ottawa sand and Berea sandstone cores. The results show that the emulsions exhibited higher recovery percentage in Berea sandstone than the one obtained with Ottawa-sand-packed cores. Crude-oil-based emulsion showed recovery efficiency above 18.1 % in Berea sandstone at a flow rate of 0.16 mL/min at 78 ºC.

References

Baldygin, A., Nobes, D. S., & Mitra, S. K. (2014). Water-alternate-emulsion (WAE): A new technique for enhanced oil recovery. J. Pet. Sci. Eng., 121, 167-173. doi:http://dx.doi.org/10.1016/j.petrol.2014.06.021
de Farias, M. L. R., Campos, E. F., de Souza, A. L. S., & Carvalho, M. S. (2016). Injection of Dilute Oil-in-Water Emulsion as an Enhanced Oil Recovery Method for Heavy Oil: 1D and 3D Flow Configurations. Transp. Porous Media, 113(2), 267-281. doi:https://doi.org/10.1007/s11242-016-0692-0
Demikhova, I. I., Likhanova, N. V., Hernandez Perez, J. R., Falcon, D. A. L., Olivares-Xometl, O., Moctezuma Berthier, A. E., & Lijanova, I. V. (2016). Emulsion flooding for enhanced oil recovery: Filtration model and numerical simulation. J. Pet. Sci. Eng., 143, 235-244. doi:http://dx.doi.org/10.1016/j.petrol.2016.02.018
Guillen, V. R., Romero, M. I., Carvalho, M. d. S., & Alvarado, V. (2012). Capillary-driven mobility control in macro emulsion flow in porous media. Int. J. Multiphase Flow, 43, 62-65. doi:https://doi.org/10.1016/j.ijmultiphaseflow.2012.03.001
Kamal, M. S., Hussein, I. A., & Sultan, A. S. (2017). Review on Surfactant Flooding: Phase Behavior, Retention, IFT, and Field Applications. Energy Fuels, 31(8), 7701-7720. doi:http://doi.org/10.1021/acs.energyfuels.7b00353
Karambeigi, M. S., Abbassi, R., Roayaei, E., & Emadi, M. A. (2015). Emulsion flooding for enhanced oil recovery: Interactive optimization of phase behavior, microvisual and core-flood experiments. J. Ind. Eng. Chem., 29, 382-391. doi:http://dx.doi.org/10.1016/j.jiec.2015.04.019
Liu, W., Luo, L., Liao, G., Zuo, L., Wei, Y., & Jiang, W. (2017). Experimental study on the mechanism of enhancing oil recovery by polymer – surfactant binary flooding. Petrol. Explor. Dev., 44(4), 636-643. doi:https://doi.org/10.1016/S1876-3804(17)30072-1
Liu, Z., Li, Y., Luan, H., Gao, W., Guo, Y., & Chen, Y. (2019). Pore scale and macroscopic visual displacement of oil-in-water emulsions for enhanced oil recovery. Chem. Eng. Sci., 197, 404-414. doi:https://doi.org/10.1016/j.ces.2019.01.001
Moradi, M., Kazempour, M., French, J. T., & Alvarado, V. (2014). Dynamic flow response of crude oil-in-water emulsion during flow through porous media. Fuel, 135, 38-45. doi:https://doi.org/10.1016/j.fuel.2014.06.025
Nazar, M. F., Shah, S. S., & Khosa, M. A. (2011). Microemulsions in Enhanced Oil Recovery: A Review. Pet. Sci. Technol., 29(13), 1353-1365. doi:http://doi.org/10.1080/10916460903502514
Nguele, R., Sasaki, K., Sugai, Y., Said Al-Salim, H., & Ueda, R. (2017). Mobilization and displacement of heavy oil by cationic microemulsions in different sandstone formations. J. Pet. Sci. Eng., 157, 1115-1129. doi:https://doi.org/10.1016/j.petrol.2017.07.032
Nordiyana, M. S. W., Khalil, M., Jan, B. M., Ali, B. S., & Tong, C. W. (2016). Formation and Phase Behavior of Winsor Type III Jatropha curcas-Based Microemulsion Systems. J. Surfactants Deterg., 19(4), 701-712. doi:https://doi.org/10.1007/s11743-016-1814-y
Park, S., Lee, E. S., & Sulaiman, W. R. W. (2015). Adsorption behaviors of surfactants for chemical flooding in enhanced oil recovery. J. Ind. Eng. Chem., 21, 1239-1245. doi:http://dx.doi.org/10.1016/j.jiec.2014.05.040
Rezaee, M. R., Jafari, A., & Kazemzadeh, E. (2006). Relationships between permeability, porosity and pore throat size in carbonate rocks using regression analysis and neural networks. J. Geophys. Eng., 3(4), 370-376. doi:http://doi.org/10.1088/1742-2132/3/4/008
Shafiee Najafi, S. A., Kamranfar, P., Madani, M., Shadadeh, M., & Jamialahmadi, M. (2017). Experimental and theoretical investigation of CTAB microemulsion viscosity in the chemical enhanced oil recovery process. J. Mol. Liq., 232, 382-389. doi:https://doi.org/10.1016/j.molliq.2017.02.092
Yu, F., Jiang, H., Fan, Z., Xu, F., Su, H., Cheng, B., . . . Li, J. (2019). Features and imbibition mechanisms of Winsor I type surfactant solution in oil-wet porous media. Petrol. Explor. Dev., 46(5), 1006-1013. doi:https://doi.org/10.1016/S1876-3804(19)60257-0
Yu, L., Dong, M., Ding, B., & Yuan, Y. (2018). Emulsification of heavy crude oil in brine and its plugging performance in porous media. Chem. Eng. Sci., 178, 335-347. doi:https://doi.org/10.1016/j.ces.2017.12.043
Zhou, Y., Wang, D., Wang, Z., & Cao, R. (2017). The formation and viscoelasticity of pore-throat scale emulsion in porous media. Petrol. Explor. Dev., 44(1), 111-118. doi:https://doi.org/10.1016/S1876-3804(17)30014-9
Published
2021-09-13
How to Cite
Olivares-Xometl, O., Likhanova, N., Lijanova, I., Arellanes-Lozada, P., Arriola-Morales, J., & López-Rodríguez, J. (2021). Injection of emulsions into cores packed with Ottawa sand and Berea sandstone as a method for enhanced oil recovery. Revista Mexicana De Ingeniería Química, 20(3), Ener2394. https://doi.org/10.24275/rmiq/Ener2394
Section
Energy Engineering

Most read articles by the same author(s)