α-L-Fucosidase from Thermotoga maritima: hydrolytic and transfucosylation activities

  • M.A. Robles-Arias
  • F. Guzmán-Rodríguez
  • M. García-Garibay
  • S. Alatorre-Santamaría
  • L. Gómez-Ruiz
  • G. Rodríguez-Serrano
  • A.E. Cruz-Guerrero
Keywords: Fucosylated oligosaccharides, fucosidase, Thermotoga maritima

Abstract

Fucosylated oligosaccharides play several biologically relevant roles. They are naturally present in human milk which offers to infants short- and long-term health benefits. These compounds can be obtained also by enzymatic synthesis. In this work, the effects of pH and temperature on hydrolytic and transfucosylation activities of α-L-fucosidase from Thermotoga maritima were evaluated. The optimal pH for the enzyme-catalyzed hydrolysis was found in a range from 6 to 8 while the highest conversions for transfucosylation reactions were observed within the range of 7-10. The best temperature for both enzymatic activities was 95 °C. Fucosylated oligosaccharides were synthesized with the highest productivity of 3.54 mM/h at pH 8 and 95 °C. Overall, optimization of the conditions of transfucosylation reaction catalyzed by the α-L-fucosidase from Thermotoga maritima allowed for higher yields of fucosylated oligosaccharides as well as shorter reaction time and a lower concentration of the employed enzyme.

References

Abdul Manas, N.H., Md. Illias, R. and Mahadi, N.M. (2018). Strategy in manipulating transglycosylation activity of glycosyl hydrolase for oligosaccharide production. Critical reviews in biotechnology, 38, 272-293. https://doi.org/10.1080/07388551.2017.1339664
Becker, D.J. and Lowe, J.B. (2003). Fucose: biosynthesis and biological function in mammals. Glycobiology, 13, 41R-53R. https://doi.org/10.1093/glycob/cwg054
Benešová, E., Lipovová, P., Dvořáková, H. and Králová, B. (2013). α-L-fucosidase from Paenibacillus thiaminolyticus: its hydrolytic and transglycosylation abilities. Glycobiology, 23, 1052-1065. https://doi.org/10.1093/glycob/cwt041
Berteau, O., Bielicki, J., Kilonda, A., Machy, D., Anson, D. S. and Kenne, L. (2004). α-L-Fucosidases: exoglycosidases with unusual transglycosylation properties. Biochemistry, 43, 7881-7891. https://doi.org/10.1021/bi036066z
Chaturvedi, P., Warren, C.D., Altaye, M., Morrow, A.L., Ruiz-Palacios, G., Pickering, L.K. and Newburg, D.S. (2001). Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology, 11, 365–372. https://doi.org/10.1093/glycob/11.5.365
Cobucci-Ponzano, B., Mazzone, M., Rossi, M. and Moracci, M. (2005). Probing the catalytically essential residues of the α-L-fucosidase from the hyperthermophilic archaeon Sulfolobus solfataricus. Biochemistry, 44, 6331-6342. https://doi.org/10.1021/bi047495f
Costantino, H. R., Brown, S. H. and Kelly, R. M. (1990). Purification and characterization of an α-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115 °C. Journal of Bacteriology, 172, 3654–3660. https://doi.org.10.1128/jb.172.7.3654-3660.1990
Escamilla-Lozano, Y., García-Garibay, M., López-Munguía-Canales, A., Gómez-Ruiz, L., Rodríguez-Serrano, G. and Cruz-Guerrero, A. (2015). Synthesis of α-L-fucosidase in different strains of lactic acid bacteria. Revista Mexicana de Ingeniería Química, 14, 623-629. http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1301/550
Escamilla-Lozano, Y., Guzmán-Rodríguez, F., Alatorre-Santamaría, S., García-Garibay, M., Gómez-Ruiz, L., Rodríguez-Serrano, G. and Cruz-Guerrero, A. (2019). Synthesis of fucosyl-oligosaccharides using α-L-fucosidase from Lactobacillus rhamnosus GG. Molecules, 24, 2402. https://doi.org/10.3390/molecules24132402
Fourage, L., Dion, M. and Colas, B. (2000). Kinetic study of a thermostable β-glycosidase of Thermus thermophilus. Effects of temperature and glucose on hydrolysis and transfucosylation reactions. Glycoconjugate Journal, 17, 377–383. https://doi.org/10.1023/A:1007104030314
Gabrielli, O., Zampini, L., Galeazzi, T., Padella, L., Santoro, L., Peila, C., Giuliani, F., Bertino, E., Fabris, C. and Coppa, G.V. (2011). Preterm milk oligosaccharides during the first month of lactation. Pediatrics, 128, e1520–e1531. https://doi.org/10.1542/peds.2011-1206
Gumerov, V.M., Rakitin, A.L., Mardanov, A.V. and Ravin, N.V. (2015). A novel highly thermostable multifunctional beta-glycosidase from crenarchaeon Acidilobus saccharovorans . Archaea, 2015, 1–6. https://doi.org/10.1155/2015/978632
Guo, L., Chen, X., Xu, L., Xiao, M. and Lu, L. (2018). Enzymatic synthesis of 6’-sialyllactose, a dominant sialylated human milk oligosaccharides, by a novel exo-α-sialidase from Bacteroides fragilis NTC9343. Applied and Environmental Microbiology, 84, 1–16. https://doi.org/ 10.1128/AEM.00071-18
Guzmán-Rodríguez, F., Alatorre-Santamaría, S., Gómez-Ruiz, L., Rodríguez-Serrano, G., García-Garibay, M. and Cruz-Guerrero, A. (2018). Synthesis of a fucosylated trisaccharide via transfucosylation by α-L-fucosidase from Thermotoga maritima. Applied Biochemistry and Biotechnology, 1–11. https://doi.org/10.1007/s12010-018-2771-x
Hansson, T., Kaper, T., van der Oost, J., De Vos, W.M. and Adlercreutz, P. (2001). Improved oligosaccharide synthesis by protein engineering of β-glucosidase CelB from hyperthermophilic Pyrococcus furiosus. Biotechnology and Bioengineering, 73, 203–210. https://doi.org/10.1002/bit.1052
Ji, E.S., Park, N.H. and Oh, D.K. (2005). Galacto-oligosaccharide production by a thermostable recombinant β-galactosidase from Thermotoga maritima. World Journal of Microbiology and Biotechnology, 21, 759-764. https://doi.org/10.1007/s11274-004-5487-8
Lezyk, M., Jers, C., Kjaerulff, L., Gotfredsen, C.H., Mikkelsen, M.D. and Mikkelsen, J.D. (2016). Novel α-L-fucosidases from a soil metagenome for production of fucosylated human milk oligosaccharides. PLoS ONE, 11, 1–18. https://doi.org/10.1371/journal.pone.0147438
Liu, Z., Zhao, C., Deng, Y., Huang, Y. and Liu, B. (2015). Characterization of a thermostable recombinant β-galactosidase from a thermophilic anaerobic bacterial consortium YTY-70. Biotechnology and Biotechnological Equipment, 29, 547–554. https://doi.org/10.1080/13102818.2015.1015244
Mehmood M.A., Shahid, I., Hussain, K., Latif, F. and Rajoka M.I. (2014). Thermodynamic properties of the β-glucosidase from Thermotoga maritima extend the upper limit of thermophilicity. Protein & Peptide Letters. 21, 1282-1288. https://doi.org. 10.1128/jb.172.7.3654-3660.1990
Pouwels, J., Moracci, M., Cobucci-Ponzano, B., Perugino, G., van der Oost, J., Kaper, T., Lebbink, J.H.G., de Vos, W.M. Ciaramella, M. and Rossi, M. (2000). Activity and stability of hyperthermophilic enzymes: a comparative study on two archaeal β-glycosidases. Extremophiles, 4, 157-164. https://doi.org/10.1007/s007920070030
Rudloff, S. and Kunz, C. (2012). The glycobiology of human milk oligosaccharides - milk oligosaccharides and metabolism in infants. Advances in Nutrition, 3, 398S-405S. https://doi.org/10.3945/an.111.001594.
Sulzenbacher, G., Bignon, C., Nishimura, T., Tarling, C.A., Withers, S.G., Henrissat, B. and Bourne, Y. (2004). Crystal structure of Thermotoga maritima α-l-fucosidase: insights into the catalytic mechanism and the molecular basis for fucosidosis. Journal of Biological Chemistry, 279, 13119-13128. https://doi.org/10.1074/jbc.M313783200
Tarling, C. A., He, S., Sulzenbacher, G., Bignon, C., Bourne, Y., Henrissat, B. and Withers, S. G. (2003). Identification of the catalytic nucleophile of the family 29 α-L-fucosidase from Thermotoga maritima through trapping of a covalent glycosyl-enzyme intermediate and mutagenesis. Journal of Biological Chemistry, 278, 47394-47399. https://doi.org/10.1074/jbc.M306610200
Turner, P., Svensson, D., Adlercreutz, P. and Karlsson, E.N. (2007). A novel variant of Thermotoga neapolitana β-glucosidase B is an efficient catalyst for the synthesis of alkyl glucosides by transfucosylation. Journal of Biotechnology, 130, 67–74. https://doi.org/10.1016/j.jbiotec.2007.02.016
Vera, C., Guerrero, C. and Illanes, A. (2011). Determination of the transgalactosylation activity of Aspergillus oryzae β-galactosidase: effect of pH, temperature, and galactose and glucose concentrations. Carbohydrate Research, 346, 745-752. https://doi.org/10.1016/j.carres.2011.01.030
Warmerdam, A., Wang, J., Boom, R. M. and Janssen, A. E. M. (2013). Effects of carbohydrates on the oNPG converting activity of β-galactosidases. Journal of Agricultural and Food Chemistry, 61, 6458–6464. https://doi.org/10.1021/jf4008554
Wu, Y., Yuan, S., Chen, S., Wu, D., Chen, J. and Wu, J. (2013). Enhancing the production of galacto-oligosaccharides by mutagenesis of Sulfolobus solfataricus β-galactosidase. Food chemistry, 138, 1588-1595. https://doi.org. 10.1016/j.foodchem.2012.11.052
Yang, J., Gao, R., Zhou, Y., Anankanbil, S., Li, J., Xie, G. and Guo, Z. (2018). β-Glucosidase from Thermotoga naphthophila RKU-10 for exclusive synthesis of galactotrisaccharides: Kinetics and thermodynamics insight into reaction mechanism. Food chemistry, 240, 422-429. https://doi.org/10.1016/j.foodchem.2017.07.155
Zehra, S., Khambati, I., Vierhout, M., Mian, M.F., Buck, R. and Forsythe, P. (2018). Human milk oligosaccharides attenuate antigen-antibody complex induced chemokine release from human intestinal epithelial cell lines. Journal of Food Science, 83, 499–508. https://doi.org/10.1111/1750-3841.14039
Zeuner, B., Jers, C., Mikkelsen, J.D. and Meyer, A.S. (2014). Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics. Journal of Agricultural and Food Chemistry, 62, 9615–9631. https://doi.org/10.1021/jf502619p
Zeuner, B., Nyffenegger, C., Mikkelsen, J.D. and Meyer, A.S. (2016). Thermostable β-galactosidases for the synthesis of human milk oligosaccharides. New Biotechnology, 33, 355–360. https://doi.org/10.1016/j.nbt.2016.01.003
Zeuner, B., Muschiol, J., Holck, J., Lezyk, M., Gedde, M. R., Jers, C., Dalgaard, M. and Meyer, A.S. (2018). Substrate specificity and transfucosylation activity of GH29 α-L-fucosidases for enzymatic production of human milk oligosaccharides. New biotechnology, 41, 34-45. https://doi.org/10.1016/j.nbt.2017.12.002
Published
2021-06-07
How to Cite
Robles-Arias, M., Guzmán-Rodríguez, F., García-Garibay, M., Alatorre-Santamaría, S., Gómez-Ruiz, L., Rodríguez-Serrano, G., & Cruz-Guerrero, A. (2021). α-L-Fucosidase from Thermotoga maritima: hydrolytic and transfucosylation activities. Revista Mexicana De Ingeniería Química, 20(3), Bio2407 1-10. https://doi.org/10.24275/rmiq/Bio2407

Most read articles by the same author(s)