Improvement of the physicochemical properties of composite materials based on cassava starch and polycaprolactone reinforced with sodium montmorillonite

  • N. Piñeros-Guerrero Programa de Ingeniería Química. Universidad de Bogotá Jorge Tadeo Lozano.
  • R. Marsiglia-Fuentes Programa de Ingeniería de Alimentos. Universidad de Cartagena
  • R. Ortega-Toro Professor Universidad de Cartagena, Colombia
Keywords: Montmorillonite clays, thermoplastic starch, polycaprolactone, extrusion process


The present work aims to study the incorporation effect of montmorillonite and polycaprolactone clays to a matrix of thermoplastic cassava starch plasticized with glycerol, the blends were obtained by extrusion process and the films by compression molding. The physicochemical, mechanical, optical and barrier properties were characterized. The addition of polycaprolactone and montmorillonite reduced the water solubility of the films and improved and the water vapor transmission rate. The oxygen transmission rate of the formulations is lower than that of some conventional polymers and comparable with Ethylene-Vinyl-Alcohol (EVOH). The addition of montmorillonite produced more rigid and less deformable films, with low gloss and low internal transmittance at 650 nm. The materials obtained are friendly to the environment and have functional properties suitable for packaging foods with low humidity, such as bakery products or flours.


Adamus, J., Spychaj, T., Zdanowicz, M., & Jędrzejewski, R. (2018). Thermoplastic starch with deep eutectic solvents and montmorillonite as a base for composite materials. Industrial Crops and Products, 123(June), 278–284.
ASTM. (1956). Specular‐Gloss Measurement of Ceramic Materials. Journal of the American Ceramic Society, 39(3), 103–109.
ASTM. (2001). Standard Test Method for Tensile Properties of Thin Plastic Sheeting 1, 14(C), 1–9.
ASTM. (2002). Standard Test Methods for Water Vapor Transmission of Materials 1. Astm, 14(July 2000), 1–10.
ASTM. (2010). Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor 1, 1–7.
Averous, L. (2016). Biocomposites based on plasticized starch : Thermal and mechanical behaviours Biocomposites based on plasticized starch : thermal and mechanical behaviours, 56(January 2004), 111–122.
Basiak, E., Lenart, A., & Debeaufort, F. (2018). How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers, 10(4).
Buso-Ríos, O., Velázquez, G., Járquin-Enríquez, L., & Flores-Marínez, N. (2020). Effect of the concentration of starch and clove essential oil on the physicochemical properties of biodegradable films. Revista Mexicana De Ingeniería Química, 19(3), 1315-1326.
Bohórquez-Ayala, M., Rojano-Quiroz, D., González-Cuello, R., García-Zapateiro, L., & Ortega-Toro, R. (2020). Application of modified vegetable oil for improvement of biodegradable materials based on thermoplastic starch and polylactic acid. Revista Mexicana De Ingeniería Química, 20(1), 423-433.
Chivrac, F., Pollet, E., Dole, P., & Avérous, L. (2010). Starch-based nano-biocomposites : Plasticizer impact on the montmorillonite exfoliation process. Carbohydrate Polymers, 79(4), 941–947.
Medrano de Jara, E., García-Hernández, E., Quequezana-Bedregal, M., Arrieta-González, C., Salgado-Delgado, R., Lastarria-Tapia, H., & Castañón-Vilca, J. (2019). Potato starch-based films: Effects of glycerol and montmorillonite nanoclay concentration. Revista Mexicana De Ingeniería Química, 19(2), 627-637.
Oleyaei, S. A., Almasi, H., Ghanbarzadeh, B., & Moayedi, A. A. (2016). Synergistic reinforcing effect of TiO2and montmorillonite on potato starch nanocomposite films: Thermal, mechanical and barrier properties. Carbohydrate Polymers, 152, 253–262.
Ortega-Toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Effect of the incorporation of surfactants on the physical properties of corn starch films. Food Hydrocolloids, 38, 66–75.
Ortega-Toro, R., Muñoz, A., Talens, P., & Chiralt, A. (2016). Improvement of properties of glycerol plasticized starch films by blending with a low ratio of polycaprolactone and/or polyethylene glycol. Food Hydrocolloids, 56, 9–19.
Piñeros-Guerrero, N., Piñeros-Castro, Y., & Ortega-Toro, R. (2019). Active biodegradable films based on thermoplastic starch and poly (e-caprolactone): technological application of antioxidant extracts from rice husk. Revista Mexicana De Ingeniería Química, 19(3), 1095-1101.
Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules.
Tran, T. N., Athanassiou, A., Basit, A., & Bayer, I. S. (2017). Starch-based bio-elastomers functionalized with red beetroot natural antioxidant. Food Chemistry, 216, 324–333.
Vaezi, K., Asadpour, G., & Sharifi, H. (2019). Effect of ZnO nanoparticles on the mechanical, barrier and optical properties of thermoplastic cationic starch/montmorillonite biodegradable films. International Journal of Biological Macromolecules, 124, 519–529.
Villabona-Ortiz, A., Tejada-Tovar, C., & Ortega-Toro, R. (2020). Physicochemical properties of biodegradable films of spine yam (Dioscorea rotundata), hydroxypropylmethylcellulose and clove oil (Syzygium aromaticum). Revista Mexicana De Ingeniería Química, 19(Sup. 1), 315-322.
Wilpiszewska, K., Antosik, A. K., & Spychaj, T. (2015). Ac ce p d cr t. Carbohydrate Polymers.
How to Cite
Piñeros-Guerrero, N., Marsiglia-Fuentes, R., & Ortega-Toro, R. (2021). Improvement of the physicochemical properties of composite materials based on cassava starch and polycaprolactone reinforced with sodium montmorillonite. Revista Mexicana De Ingeniería Química, 20(3), Alim2416: 1-12.
Food Engineering