Improvement of the physicochemical properties of composite materials based on cassava starch and polycaprolactone reinforced with sodium montmorillonite

  • N. Piñeros-Guerrero Programa de Ingeniería Química. Universidad de Bogotá Jorge Tadeo Lozano.
  • R. Marsiglia-Fuentes Programa de Ingeniería de Alimentos. Universidad de Cartagena
  • R. Ortega-Toro Professor Universidad de Cartagena, Colombia
Keywords: Montmorillonite clays, thermoplastic starch, polycaprolactone, extrusion process

Abstract

The present work aims to study the incorporation effect of montmorillonite and polycaprolactone clays to a matrix of thermoplastic cassava starch plasticized with glycerol, the blends were obtained by extrusion process and the films by compression molding. The physicochemical, mechanical, optical and barrier properties were characterized. The addition of polycaprolactone and montmorillonite reduced the water solubility of the films and improved and the water vapor transmission rate. The oxygen transmission rate of the formulations is lower than that of some conventional polymers and comparable with Ethylene-Vinyl-Alcohol (EVOH). The addition of montmorillonite produced more rigid and less deformable films, with low gloss and low internal transmittance at 650 nm. The materials obtained are friendly to the environment and have functional properties suitable for packaging foods with low humidity, such as bakery products or flours.

References

Adamus, J., Spychaj, T., Zdanowicz, M., & Jędrzejewski, R. (2018). Thermoplastic starch with deep eutectic solvents and montmorillonite as a base for composite materials. Industrial Crops and Products, 123(June), 278–284. https://doi.org/10.1016/j.indcrop.2018.06.069
ASTM. (1956). Specular‐Gloss Measurement of Ceramic Materials. Journal of the American Ceramic Society, 39(3), 103–109. https://doi.org/10.1111/j.1151-2916.1956.tb15632.x
ASTM. (2001). Standard Test Method for Tensile Properties of Thin Plastic Sheeting 1, 14(C), 1–9. https://doi.org/10.1520/D0882-09.
ASTM. (2002). Standard Test Methods for Water Vapor Transmission of Materials 1. Astm, 14(July 2000), 1–10. https://doi.org/10.1520/E0096
ASTM. (2010). Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor 1, 1–7. https://doi.org/10.1520/D3985-05R10E01.2
Averous, L. (2016). Biocomposites based on plasticized starch : Thermal and mechanical behaviours Biocomposites based on plasticized starch : thermal and mechanical behaviours, 56(January 2004), 111–122. https://doi.org/10.1016/j.carbpol.2003.11.015
Basiak, E., Lenart, A., & Debeaufort, F. (2018). How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers, 10(4). https://doi.org/10.3390/polym10040412
Buso-Ríos, O., Velázquez, G., Járquin-Enríquez, L., & Flores-Marínez, N. (2020). Effect of the concentration of starch and clove essential oil on the physicochemical properties of biodegradable films. Revista Mexicana De Ingeniería Química, 19(3), 1315-1326. https://doi.org/10.24275/rmiq/Alim965
Bohórquez-Ayala, M., Rojano-Quiroz, D., González-Cuello, R., García-Zapateiro, L., & Ortega-Toro, R. (2020). Application of modified vegetable oil for improvement of biodegradable materials based on thermoplastic starch and polylactic acid. Revista Mexicana De Ingeniería Química, 20(1), 423-433. https://doi.org/10.24275/rmiq/Poly2164
Chivrac, F., Pollet, E., Dole, P., & Avérous, L. (2010). Starch-based nano-biocomposites : Plasticizer impact on the montmorillonite exfoliation process. Carbohydrate Polymers, 79(4), 941–947. https://doi.org/10.1016/j.carbpol.2009.10.018
Medrano de Jara, E., García-Hernández, E., Quequezana-Bedregal, M., Arrieta-González, C., Salgado-Delgado, R., Lastarria-Tapia, H., & Castañón-Vilca, J. (2019). Potato starch-based films: Effects of glycerol and montmorillonite nanoclay concentration. Revista Mexicana De Ingeniería Química, 19(2), 627-637. https://doi.org/10.24275/rmiq/Poli779
Oleyaei, S. A., Almasi, H., Ghanbarzadeh, B., & Moayedi, A. A. (2016). Synergistic reinforcing effect of TiO2and montmorillonite on potato starch nanocomposite films: Thermal, mechanical and barrier properties. Carbohydrate Polymers, 152, 253–262. https://doi.org/10.1016/j.carbpol.2016.07.040
Ortega-Toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Effect of the incorporation of surfactants on the physical properties of corn starch films. Food Hydrocolloids, 38, 66–75. https://doi.org/10.1016/j.foodhyd.2013.11.011
Ortega-Toro, R., Muñoz, A., Talens, P., & Chiralt, A. (2016). Improvement of properties of glycerol plasticized starch films by blending with a low ratio of polycaprolactone and/or polyethylene glycol. Food Hydrocolloids, 56, 9–19. https://doi.org/10.1016/j.foodhyd.2015.11.029
Piñeros-Guerrero, N., Piñeros-Castro, Y., & Ortega-Toro, R. (2019). Active biodegradable films based on thermoplastic starch and poly (e-caprolactone): technological application of antioxidant extracts from rice husk. Revista Mexicana De Ingeniería Química, 19(3), 1095-1101. https://doi.org/10.24275/rmiq/poli898
Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2019.03.190
Tran, T. N., Athanassiou, A., Basit, A., & Bayer, I. S. (2017). Starch-based bio-elastomers functionalized with red beetroot natural antioxidant. Food Chemistry, 216, 324–333. https://doi.org/10.1016/j.foodchem.2016.08.055
Vaezi, K., Asadpour, G., & Sharifi, H. (2019). Effect of ZnO nanoparticles on the mechanical, barrier and optical properties of thermoplastic cationic starch/montmorillonite biodegradable films. International Journal of Biological Macromolecules, 124, 519–529. https://doi.org/10.1016/j.ijbiomac.2018.11.142
Villabona-Ortiz, A., Tejada-Tovar, C., & Ortega-Toro, R. (2020). Physicochemical properties of biodegradable films of spine yam (Dioscorea rotundata), hydroxypropylmethylcellulose and clove oil (Syzygium aromaticum). Revista Mexicana De Ingeniería Química, 19(Sup. 1), 315-322. https://doi.org/10.24275/rmiq/Alim1540
Wilpiszewska, K., Antosik, A. K., & Spychaj, T. (2015). Ac ce p d cr t. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2015.04.023
Published
2021-06-07
How to Cite
Piñeros-Guerrero, N., Marsiglia-Fuentes, R., & Ortega-Toro, R. (2021). Improvement of the physicochemical properties of composite materials based on cassava starch and polycaprolactone reinforced with sodium montmorillonite. Revista Mexicana De Ingeniería Química, 20(3), Alim2416: 1-12. https://doi.org/10.24275/rmiq/Alim2416
Section
Food Engineering