Synthesis of adsorbents from wheat hulls, extracted cellulose and modified with Cetyl trimethyl ammonium chloride to remove Congo Red in aqueous solution

  • Angel Villabona-Ortiz Programa de Ingeniería Química. Universidad de Cartagena
  • Candelaria Tejada-Tovar Programa de Ingeniería Química. Universidad de Cartagena
  • Rodrigo Ortega Toro Professor Universidad de Cartagena, Colombia
  • Fabián Aguilar-Bermúdez Programa de Ingeniería Química. Universidad de Cartagena
  • Yeraldine Pájaro-Moreno Programa de Ingeniería Química. Universidad de Cartagena
Keywords: adsorption, Congo red dye, isotherms, wheat hulls


Adsorbents from the wheat husk (WH), wheat husk cellulose (WHC) and the cellulose modified with Cetyl trimethyl ammonium chloride (MWHC), in the removal of Congo Red were evaluated. Experiments were carried out in batch at different concentrations (40, 70 and 100 mg/L) and adsorbent doses (15, 25 and 35 mg), following a multifactorial 33 design of experiments. It was found the adsorption efficiency of Congo red increased with initial concentration and decrease in adsorbent dosage using all adsorbents. WHC and MWHC showed a rapid adsorption rate in the initial minutes of the process, reaching equilibrium at 480 and 120, respectively. The adsorption equilibrium on WHC and MWHC was described by the Freundlich model; showing this affinity: MWHC>WHC>WH. It was concluded wheat residues are a good precursor for the preparation of efficient adsorbents to remove Congo Red. CTAC functions as an adsorbent modifying agent for use in the removal of anionic contaminants. These results have a potential application in the treatment of wastewater from industries such as food and textiles.


Afshin, S., Rashtbari, Y., Shirmardi, M., Vosoughi, M., & Hamzehzadeh, A. (2019). Adsorption of basic violet 16 dye from aqueous solution onto mucilaginous seeds of Salvia sclarea: Kinetics and isotherms studies. Desalination and Water Treatment, 161(July), 365–375.

Al-Lagtah, N. M. A., Al-Muhtaseb, A. H., Ahmad, M. N. M., & Salameh, Y. (2016). Chemical and physical characteristics of optimal synthesised activated carbons from grass-derived sulfonated lignin versus commercial activated carbons. Microporous and Mesoporous Materials, 225, 504–514.

Alhujaily, A., Yu, H., Zhang, X., & Ma, F. (2018). Highly Efficient and Sustainable Spent Mushroom Waste Adsorbent Based on Surfactant Modification for the Removal of Toxic Dyes. International Journal of Environmental Research and Public Health 2018, Vol. 15, Page 1421, 15(7), 1421.

An, L., Si, C., Bae, J. H., Jeong, H., & Kim, Y. S. (2020). One-step silanization and amination of lignin and its adsorption of Congo red and Cu(II) ions in aqueous solution. International Journal of Biological Macromolecules, 159, 222–230.

Aoopngan, C., Nonkumwong, J., Phumying, S., Promjantuek, W., Maensiri, S., Noisa, P., Pinitsoontorn, S., Ananta, S., & Srisombat, L. (2019). Amine-Functionalized and Hydroxyl-Functionalized Magnesium Ferrite Nanoparticles for Congo Red Adsorption. ACS Applied Nano Materials, 2(8), 5329–5341.

Argumedo-Delira, R., Gómez-Martínez, M. J., & Uribe-Kaffure, R. (2021). Trichoderma Biomass as an Alternative for Removal of Congo Red and Malachite Green Industrial Dyes. Applied Sciences, 11(1), 448.

Bayramoglu, G., & Arica, M. Y. (2018). Adsorption of Congo Red dye by native amine and carboxyl modified biomass of Funalia trogii: Isotherms, kinetics and thermodynamics mechanisms. Korean Journal of Chemical Engineering, 35(6), 1303–1311.

Chahkandi, M. (2017). Mechanism of Congo red adsorption on new sol-gel-derived hydroxyapatite nano-particle. Materials Chemistry and Physics, 202, 340–351.

Chakraborty, S., Farida, J. J., Simon, R., Kasthuri, S., & Mary, N. L. (2020). Averrhoe carrambola fruit extract assisted green synthesis of zno nanoparticles for the photodegradation of congo red dye. Surfaces and Interfaces, 19, 100488.

Chukki, J., Abinandan, S., & Shanthakumar, S. (2018). Chrysanthemum indicum microparticles on removal of hazardous Congo red dye using response surface methodology. International Journal of Industrial Chemistry, 9(4), 305–316.

Chukwuemeka-Okorie, H. O., Ekuma, F. K., Akpomie, K. G., Nnaji, J. C., & Okereafor, A. G. (2021). Adsorption of tartrazine and sunset yellow anionic dyes onto activated carbon derived from cassava sievate biomass. Applied Water Science, 11(2), 27.

Ding, C., Yi, M., Liu, B., Han, C., Yu, X., & Wang, Y. (2020). Forward osmosis-extraction hybrid process for resource recovery from dye wastewater. Journal of Membrane Science, 612, 118376.

Elmoubarki, R., Mahjoubi, F. Z., Tounsadi, H., Moustadraf, J., Abdennouri, M., Zouhri, A., El Albani, A., & Barka, N. (2015). Adsorption of textile dyes on raw and decanted Moroccan clays: Kinetics, equilibrium and thermodynamics. Water Resources and Industry, 9, 16–29.

Ezekoye, O. M., Akpomie, K. G., Eze, S. I., Chukwujindu, C. N., Ani, J. U., & Ujam, O. T. (2020). Biosorptive interaction of alkaline modified Dialium guineense seed powders with ciprofloxacin in contaminated solution: central composite, kinetics, isotherm, thermodynamics, and desorption. International Journal of Phytoremediation, 22(10), 1028–1037.

Fan, C., & Zhang, Y. (2018). Adsorption isotherms, kinetics and thermodynamics of nitrate and phosphate in binary systems on a novel adsorbent derived from corn stalks. Journal of Geochemical Exploration, 188, 95–100.

Han, Y., Cao, X., Ouyang, X., Sohi, S. P., & Chen, J. (2016). Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: Effects of production conditions and particle size. Chemosphere, 145, 336–341.

Hospodarova, V., Singovszka, E., & Stevulova, N. (2018). Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials. American Journal of Analytical Chemistry, 9(6), 303–310.

Hu, Q., Chen, N., Feng, C., Hu, W., & Liu, H. (2016). Kinetic and isotherm studies of nitrate adsorption on granular Fe-Zr-chitosan complex and electrochemical reduction of nitrate from the spent regenerant solution. RSC Advances, 6, 61944–61954.

Hussain, I., Li, Y., Qi, J., Li, J., & Wang, L. (2018). Nitrogen-enriched carbon sheet for Methyl blue dye adsorption. Journal of Environmental Management, 215, 123–131.

Jia, Y., Ding, L., Ren, P., Zhong, M., Ma, J., & Fan, X. (2020). Performances and Mechanism of Methyl Orange and Congo Red Adsorbed on the Magnetic Ion-Exchange Resin. Journal of Chemical and Engineering Data, 65(2), 725–736.

Jiang, Z., & Hu, D. (2019). Molecular mechanism of anionic dyes adsorption on cationized rice husk cellulose from agricultural wastes. Journal of Molecular Liquids, 276, 105–114.

Johari, K., Saman, N., Song, S. T., Chin, C. S., Kong, H., & Mat, H. (2016). Adsorption enhancement of elemental mercury by various surface modified coconut husk as eco-friendly low-cost adsorbents. International Biodeterioration and Biodegradation, 109, 45–52.

Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676–4697.

Kelm, M. A. P., da Silva Júnior, M. J., de Barros Holanda, S. H., de Araujo, C. M. B., de Assis Filho, R. B., Freitas, E. J., dos Santos, D. R., & da Motta Sobrinho, M. A. (2019). Removal of azo dye from water via adsorption on biochar produced by the gasification of wood wastes. Environmental Science and Pollution Research, 26(28), 28558–28573.

Khurana, I., Saxena, A., Bharti, Khurana, J. M., & Rai, P. K. (2017). Removal of Dyes Using Graphene-Based Composites: a Review. Water, Air, and Soil Pollution, 228(5).

Kim, U. J., Kimura, S., & Wada, M. (2019). Highly enhanced adsorption of Congo red onto dialdehyde cellulose-crosslinked cellulose-chitosan foam. Carbohydrate Polymers, 214, 294–302.

Kırbıyık, Ç., Pütün, A. E., & Pütün, E. (2017). Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl 2 activation. Surfaces and Interfaces, 8, 182–192.

Koay, Y. S., Ahamad, I. S., Nourouzi, M. M., Abdullah, L. C., & Choong, T. S. Y. (2014). Development of novel low-cost quaternized adsorbent from palm oil agriculture waste for reactive dye removal. BioResources, 9(1), 66–85.

Koley, P., Sakurai, M., Takei, T., & Aono, M. (2016). Facile fabrication of silk protein sericin-mediated hierarchical hydroxyapatite-based bio-hybrid architectures: Excellent adsorption of toxic heavy metals and hazardous dye from wastewater. RSC Advances.

Kruer-Zerhusen, N., Cantero-Tubilla, B., & Wilson, D. B. (2018). Characterization of cellulose crystallinity after enzymatic treatment using Fourier transform infrared spectroscopy (FTIR). Cellulose, 25(1), 37–48.

Kumari, S., Mankotia, D., & Chauhan, G. S. (2016). Crosslinked cellulose dialdehyde for Congo red removal from its aqueous solutions. Journal of Environmental Chemical Engineering, 4(1), 1126–1136.

Li, Q., Wang, M., Yuan, X., Li, D., Xu, H., Sun, L., Pan, F., & Xia, D. (2019). Study on the adsorption and desorption performance of magnetic resin for Congo red. Environmental Technology (United Kingdom).

Litefti, K., Freire, M. S., Stitou, M., & González-Álvarez, J. (2019). Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark. Scientific Reports, 9(1), 1–11.

Liu, J., Wang, N., Zhang, H., & Baeyens, J. (2019). Adsorption of Congo red dye on FexCo3-xO4 nanoparticles. Journal of Environmental Management, 238, 473–483.

Madan, S., Shaw, R., Tiwari, S., & Tiwari, S. K. (2019). Adsorption dynamics of Congo red dye removal using ZnO functionalized high silica zeolitic particles. Applied Surface Science, 487(May), 907–917.

Magdy, Y. H., & Altaher, H. (2018). Kinetic analysis of the adsorption of dyes from high strength wastewater on cement kiln dust. Journal of Environmental Chemical Engineering, 6, 834–841.

Mohamed Pauzan, A. S., & Ahad, N. (2018). Biomass Modification Using Cationic Surfactant Cetyltrimethylammonium Bromide (CTAB) to Remove Palm-Based Cooking Oil. Journal of Chemistry, 2018.

Mondal, N. K., & Kar, S. (2018). Potentiality of banana peel for removal of Congo red dye from aqueous solution: isotherm, kinetics and thermodynamics studies. Applied Water Science, 8(6).

Munagapati, V. S., & Kim, D. S. (2017). Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite. Ecotoxicology and Environmental Safety, 141, 226–234.

Parvin, S., Biswas, B. K., Rahman, M. A., Rahman, M. H., Anik, M. S., & Uddin, M. R. (2019). Study on adsorption of Congo red onto chemically modified egg shell membrane. Chemosphere, 236, 124326.

Pei, A., Butchosa, N., Berglund, L. A., & Zhou, Q. (2013). Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter, 9(6), 2047–2055.

Ramya Sankar, M. S., Sivasubramanian, V., Vidya Vijay, E. V., Jerold, M., Kanimozhi, J., Sinu, P., & Shankar, N. (2018). Kinetic, isothermal and thermodynamic investigation on electrocoagulation of congo red dye removal from synthetic wastewater using aluminium electrodes. Desalination and Water Treatment, 122, 399–350.

Rani, K. C., Naik, A., Chaurasiya, R. S., & Raghavarao, K. S. M. S. (2017). Removal of toxic Congo red dye from water employing low-cost coconut residual fiber. Water Science and Technology, 75(9), 2225–2236.

Ranjbar, D., Raeiszadeh, M., Lewis, L., MacLachlan, M. J., & Hatzikiriakos, S. G. (2020). Adsorptive removal of Congo red by surfactant modified cellulose nanocrystals: a kinetic, equilibrium, and mechanistic investigation. Cellulose, 27(6), 3211–3232.

Reck, I. M., Paixão, R. M., Bergamasco, R., Vieira, M. F., & Vieira, A. M. S. (2018). Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. Journal of Cleaner Production, 171, 85–97.

Rinaldi, R., Yasdi, Y., & Hutagalung, W. L. C. (2018). Removal of Ni (II) and Cu (II) ions from aqueous solution using rambutan fruit peels (Nephelium lappaceum L.) as adsorbent. AIP Conference Proceedings, 2026(Ii).

Roy, T. K., & Mondal, N. K. (2019). Potentiality of Eichhornia shoots ash towards removal of Congo red from aqueous solution: Isotherms, kinetics, thermodynamics and optimization studies. Groundwater for Sustainable Development, 9, 100269.

Saha, N., Saba, A., & Reza, M. T. (2019). Effect of hydrothermal carbonization temperature on pH, dissociation constants, and acidic functional groups on hydrochar from cellulose and wood. Journal of Analytical and Applied Pyrolysis, 137, 138–145.

Said, A. E. A. A., Aly, A. A. M., Goda, M. N., Abd El-Aal, M., & Abdelazim, M. (2020). Adsorptive Remediation of Congo Red Dye in Aqueous Solutions Using Acid Pretreated Sugarcane Bagasse. Journal of Polymers and the Environment, 28(4), 1129–1137.

Salahuddin, N., Abdelwahab, M. A., Akelah, A., & Elnagar, M. (2020). Adsorption of Congo red and crystal violet dyes onto cellulose extracted from Egyptian water hyacinth. Natural Hazards, 1–20.

Sanchez, L. M., Ollier, R. P., Gonzalez, J. S., & Alvarez, V. A. (2018). Nanocomposite materials for dyes removal. In Handbook of Nanomaterials for Industrial Applications (pp. 922–951). Elsevier.

Sharma, A., Siddiqui, Z. M., Dhar, S., Mehta, P., & Pathania, D. (2019). Adsorptive removal of congo red dye (CR) from aqueous solution by Cornulaca monacantha stem and biomass-based activated carbon: isotherm, kinetics and thermodynamics. Separation Science and Technology (Philadelphia), 54(6), 916–929.

Singh, N. B., Nagpal, G., Agrawal, S., & Rachna. (2018). Water purification by using Adsorbents: A Review. Environmental Technology and Innovation, 11, 187–240.

Tan, C. H. C., Sabar, S., & Hussin, M. H. (2018). Development of immobilized microcrystalline cellulose as an effective adsorbent for methylene blue dye removal. South African Journal of Chemical Engineering, 26(July), 11–24.

Wekoye, J. N., Wanyonyi, W. C., Wangila, P. T., & Tonui, M. K. (2020). Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder. Environmental Chemistry and Ecotoxicology, 2, 24–31.

Widjanarko, P. I., Widiantoro, W., Soetaredjo, L. F. E., & Ismadji, S. (2018). Kinetika adsorpsi zat warna Congo Red dan Rhodamine B dengan menggunakan serabut kelapa dan ampas tebu. Jurnal Teknik Kimia Indonesia.

Xia, F., Yang, H., Li, L., Ren, Y., Shi, D., Chai, H., Ai, H., He, Q., & Gu, L. (2019). Enhanced nitrate adsorption by using cetyltrimethylammonium chloride pre-loaded activated carbon. Environmental Technology (United Kingdom), 1–11.

Xu, J., Krietemeyer, E. F., Boddu, V. M., Liu, S. X., & Liu, W. C. (2018). Production and characterization of cellulose nanofibril (CNF) from agricultural waste corn stover. Carbohydrate Polymers, 192, 202–207.

Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172–184.

Zhang, H., Zhou, J., Muhammad, Y., Tang, R., Liu, K., Zhu, Y., & Tong, Z. (2019). Citric Acid Modified Bentonite for Congo Red Adsorption. Frontiers in Materials, 6(5), 5.

Zheng, Y., Cheng, B., Fan, J., Yu, J., & Ho, W. (2021). Review on nickel-based adsorption materials for Congo red. In Journal of Hazardous Materials (Vol. 403, p. 123559). Elsevier B.V.

Zubir, M. H. M., & Zaini, M. A. A. (2020). Twigs-derived activated carbons via H3PO4/ZnCl2 composite activation for methylene blue and congo red dyes removal. Scientific Reports, 10(1), 14050.

How to Cite
Villabona-Ortiz, A., Tejada-Tovar, C., Ortega Toro, R., Aguilar-Bermúdez, F., & Pájaro-Moreno, Y. (2021). Synthesis of adsorbents from wheat hulls, extracted cellulose and modified with Cetyl trimethyl ammonium chloride to remove Congo Red in aqueous solution. Revista Mexicana De Ingeniería Química, 20(3), IA2426.
Environmental Engineering

Most read articles by the same author(s)