The importance of carbon and nitrogen sources on exopolysaccharide synthesis by lactic acid bacteria and their industrial importance

Keywords: Exopolysaccharides, homopolysaccharides, heteropolysaccharides, lactic acid bacteria, extracellular enzymes

Abstract

Exopolysaccharides (EPSs) are classified in two groups, homopolysaccharides (HoPs) and heteropolysaccharides (HePs), are produced by lactic acid bacteria (LAB) and used in a range of industrial applications including the medical and food industries. HoPs are extracellular EPSs and their production depends on extracellular enzymes, while HePs are intracellular EPSs. Their nature (extra or intracellular) directly impacts production rates, HoPs having higher yields. The development of processes for producing EPSs has attracted great interest, since novel application trends have emerged due to the great diversity of recent information generated on EPSs properties. HoPs have been synthesized by fermentation using bacterial cells and a cell-free enzymatic process, while HePs have been produced only by fermentation. The analysis of the EPSs production processes indicates that macronutrients such as the carbon and nitrogen source used in the culture media are very important for the synthesis of EPSs and the enzymes involved, understanding their importance can assist to design processes for production of EPSs with desirable characteristics and yields according to the needs of the processes and products to which they are applicable. This review emphasized in the analyses of carbon and nitrogen sources used for EPSs production and their functional applications and productive aspects.

References

Abriouel, H., Lerma, L. L., Casado Muñoz, M. del C., Montoro, B. P., Kabisch, J., Pichner, R., Benomar, N. (2015). The controversial nature of the Weissella genus: technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health. Frontiers in Microbiology 6, 1197. https://doi.org/10.3389/fmicb.2015.0119
Ahmed, R. Z., Siddiqui K., Arman, M, and Ahmed, N. (2012). Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohydrate Polymers 90(1), 441-446. https://doi.org/10.1016/j.carbpol.2012.05.063
Ale, E. C., Batistela, V. A., Correa, O. G., Ferrado, J. B., Sadiq, S., Ahmed, H. I. and Binetti AG (2020) Statistical optimisation of the exopolysaccharide production by Lactobacillus fermentum Lf2 and analysis of its chemical composition. International Journal of Dairy Technology 73(1), 76-87. https://doi.org/10.1111/1471-0307.12639
Amaretti, A., Bottari B., Morreale, F., Savo, M. L., Angelino, D., Raimondi, S., and Pellegrini, N. (2020). Potential prebiotic effect of a long-chain dextran produced by Weissella cibaria: an in vitro evaluation. International journal of food sciences and nutrition, 1-9. https://doi.org/10.1080/09637486.2019.1711026
Amiri, S., Mokarram, R. R., Khiabani, M. S., Bari, M. R., and Khaledabad, M. A. (2019). Exopolysaccharides production by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12: optimization of fermentation variables and characterization of structure and bioactivities. International Journal of Biological Macromolecules 123, 752-765. https://doi.org/10.1016/j.ijbiomac.2018.11.084
Anur, R. M., Mufithah, N., Sawitri, W. D., Sakakibara, H., and Sugiharto, B. (2020). Overexpression of sucrose phosphate synthase enhanced sucrose content and biomass production in transgenic sugarcane. Plants 9(2), 200. https://doi.org/10.3390/plants9020200
Ates, O. (2015). Systems biology of microbial exopolysaccharides production. Frontiers in bioengineering and biotechnology 3, 200. https://doi.org/10.3389/fbioe.2015.00200
Barcelos, M. C., Vespermann, K. A., Pelissari, F. M., and Molina, G. (2020). Current status of biotechnological production and applications of microbial exopolysaccharides. Critical Reviews in Food Science and Nutrition 60(9), 1475-1495. https://doi.org/10.1080/10408398.2019.1575791
Baruah, R., Das, D., and Goyal, A. (2016). Heteropolysaccharides from lactic acid bacteria: current trends and applications. Journal of Probiotics and Health 4(141), 2. https://doi.org/10.4172/2329-8901.1000141
Baruah, R., Maina, N. H., Katina, K., Juvonen, R., and Goyal, A. (2017). Functional food applications of dextran from Weissella cibaria RBA12 from pummelo (Citrus maxima). International Journal of Food Microbiology 242, 124-131. https://doi.org/10.1016/j.ijfoodmicro.2016.11.012
Benhouna, I. S., Heumann, A., Rieu, A., Guzzo, J., Kihal, M., Bettache, G., and Weidmann, S. (2019). Exopolysaccharide produced by Weissella confusa: Chemical characterisation, rheology and bioactivity. International Dairy Journal 90, 88-94. https://doi.org/10.1016/j.idairyj.2018.11.006
Blandón, L. M., Noseda, M. D., Islan, G. A., Castro, G. R., de Melo Pereira, G. V., Thomaz-Soccol, V., and Soccol, C. R. (2018). Optimization of culture conditions for kefiran production in whey: The structural and biocidal properties of the resulting polysaccharide. Bioactive Carbohydrates and Dietary Fibre 16, 14-21. https://doi.org/10.1016/j.bcdf.2018.02.001
Boddapati, S., Rai, R., and Gummadi, S. N. (2020). Structural analysis and antioxidative properties of mutan (water-insoluble glucan) and carboxymethyl mutan from Streptococcus mutans. Process Biochemistry 97, 130-139. https://doi.org/10.1016/j.procbio.2020.07.006
Borgio, J. F., Bency, B. J., Ramesh, S., and Amuthan, M. (2009). Exopolysaccharide production by Bacillus subtilis NCIM 2063, Pseudomonas aeruginosa NCIM 2862 and Streptococcus mutans MTCC 1943 using batch culture in different media. African Journal of Biotechnology 8(20). https://doi.org/10.5897/AJB2009.000-9450
Castilla-Marroquín, J. D., Hernández-Martínez, R., de la Vequia, H. D., Ríos-Corripio, M. A., Hernández-Rosas, J., López, M. R., and Hernández-Rosas, F. (2020). Dextran synthesis by native sugarcane microorganisms. Revista Mexicana de Ingeniería Química, 19(Sup. 1) 177-185. https://doi.org/10.24275/rmiq/Bio1793
Charoenwongpaiboon, T., Wangpaiboon, K., Pichyangkura, R., and Prousoontorn, M. H. (2018). Highly porous core–shell chitosan beads with superb immobilization efficiency for Lactobacillus reuteri 121 inulosucrase and production of inulin-type fructooligosaccharides. RSC advances 8(30) 17008-17016. https://doi.org/10.1039/c8ra02241k
Chen, Z., Tian, Y., Zhang, W., Guang, C., Meng, X., and Mu, W. (2019). Novel Dextransucrase Gtf-DSM, Highly Similar in Sequence to Reuteransucrase GtfO, Displays Unique Product Specificity. Journal of agricultural and food chemistry 67(46), 12806-12815. https://doi.org/10.1021/acs.jafc.9b04252
Cheng, X., Huang, L., and Li, K. T. (2019). Antioxidant activity changes of exopolysaccharides with different carbon sources from Lactobacillus plantarum LPC-1 and its metabolomic analysis. World Journal of Microbiology and Biotechnology 35(5), 1-13. https://doi.org/10.1007/s11274-019-2645-6
Dai, Z., Cui, L., Li, J., Wang, B., Guo, L., Wu, Z., .and Wu, G. (2020). Fermentation techniques in feed production. In Animal agriculture (pp. 407-429). Academic press. https://doi.org/10.1016/B978-0-12-817052-6.00024-0
Dailin, D. J., Elsayed, E. A., Othman, N. Z., Malek, R. A., Ramli, S. O. L. L. E. H., Sarmidi, M. R., .and El Enshasy, H. A. (2015). Development of cultivation medium for high yield kefiran production by Lactobacillus kefiranofaciens. International Journal of Pharmacy and Pharmaceutical Sciences 7(3), 159-163.
Dailin, D. J., Elsayed, E. A., Othman, N. Z., Malek, R., Phin, H. S., Aziz, R., and El Enshasy, H. A. (2016). Bioprocess development for kefiran production by Lactobacillus kefiranofaciens in semi industrial scale bioreactor. Saudi Journal of Biological Sciences 23(4), 495-502. https://doi.org/10.1016/j.sjbs.2015.06.003
Davidović, S., Miljković, M., Tomić, M., Gordić, M., Nešić, A., and Dimitrijević, S. (2018). Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3. Carbohydrate polymers 184, 207-213. https://doi.org/10.1016/j.carbpol.2017.12.061
Degeest, B., Vaningelgem, F., and De Vuyst, L. (2001). Microbial physiology, fermentation kinetics, and process engineering of heteropolysaccharide production by lactic acid bacteria. International Dairy Journal 11(9), 747-757. https://doi.org/10.1016/S0958-6946(01)00118-2
Dertli, E., Mercan, E., Arıcı, M., Yılmaz, M. T., and Sağdıç, O. (2016). Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics. LWT-Food Science and Technology 71, 116-124. https://doi.org/10.1016/j.lwt.2016.03.030
Donot, F., Fontana, A., Baccou, J. C., and Schorr-Galindo, S. (2012). Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers 87(2), 951-962. https://doi.org/10.1016/j.carbpol.2011.08.083
Du, R., Qiao, X., Zhao, F., Song, Q., Zhou, Q., Wang, Y., and Zhou, Z. (2018). Purification, characterization and antioxidant activity of dextran produced by Leuconostoc pseudomesenteroides from homemade wine. Carbohydrate Polymers 198, 529-536. https://doi.org/10.1016/j.carbpol.2018.06.116
Du, R., Xing, H., Yang, Y., Jiang, H., Zhou, Z., and Han, Y. (2017). Optimization, purification and structural characterization of a dextran produced by L. mesenteroides isolated from Chinese sauerkraut. Carbohydrate Polymers 174, 409-416. https://doi.org/10.1016/j.carbpol.2017.06.084
Feng, F., Zhou, Q., Yang, Y., Zhao, F., Du, R., Han, Y., and Zhou, Z. (2018). Characterization of highly branched dextran produced by Leuconostoc citreum B-2 from pineapple fermented product. International Journal of Biological Macromolecules 113, 45-50. https://doi.org/10.1016/j.ijbiomac.2018.02.119
Freitas, F., Torres, C. A., and Reis, M. A. (2017). Engineering aspects of microbial exopolysaccharide production. Bioresource technology 245, 1674-1683. https://doi.org/10.1016/j.biortech.2017.05.092
Galle, S., Schwab, C., Arendt, E. K., and Gänzle, M. G. (2011). Structural and rheological characterisation of heteropolysaccharides produced by lactic acid bacteria in wheat and sorghum sourdough. Food Microbiology 28(3), 547-553. https://doi.org/10.1016/j.fm.2010.11.006
Galle, S., and Arendt, E. K. (2014). Exopolysaccharides from sourdough lactic acid bacteria. Critical Reviews in Food Science and Nutrition 54(7), 891-901. https://doi.org/10.1080/10408398.2011.617474
Gangoiti, J., Corwin, S. F., Lamothe, L. M., Vafiadi, C., Hamaker, B. R., and Dijkhuizen, L. (2020). Synthesis of novel α-glucans with potential health benefits through controlled glucose release in the human gastrointestinal tract. Critical Reviews in Food Science and Nutrition 60(1), 123-146. https://doi.org/10.1080/10408398.2018.1516621
Gangoiti, J., Pijning, T., and Dijkhuizen, L. (2018). Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans from starch and sucrose. Biotechnology Advances 36(1), 196-207. https://doi.org/10.1016/j.biotechadv.2017.11.001
Hamsan, M. H., Shukur, M. F., Aziz, S. B., Yusof, Y. M., and Kadir, M. F. Z. (2020). Influence of NH4NH4Br as an ionic source on the structural/electrical properties of dextran-based biopolymer electrolytes and EDLC application. Bulletin of Materials Science 43(1), 1-7. https://doi.org/10.1007/s12034-019-2008-9
Han, J., Hang, F., Guo, B., Liu, Z., You, C., and Wu, Z. (2014). Dextran synthesized by Leuconostoc mesenteroides BD1710 in tomato juice supplemented with sucrose. Carbohydrate polymers 112, 556-562. https://doi.org/10.1016/j.carbpol.2014.06.035
Hegerle, N., Bose, J., Ramachandran, G., Galen, J. E., Levine, M. M., Simon, R., and Tennant, S. M. (2018). Overexpression of O‐polysaccharide chain length regulators in Gram‐negative bacteria using the Wzx‐/Wzy‐dependent pathway enhances production of defined modal length O‐polysaccharide polymers for use as haptens in glycoconjugate vaccines. Journal of Applied Microbiology 125(2), 575-585. https://doi.org/10.1111/jam.13772
Hilbig, J., Gisder, J., Prechtl, R. M., Herrmann, K., Weiss, J., Aand Loeffler, M. (2019). Influence of exopolysaccharide-producing lactic acid bacteria on the spreadability of fat-reduced raw fermented sausages (Teewurst). Food Hydrocolloids 93, 422-431. https://doi.org/10.1016/j.foodhyd.2019.01.056
Huang, C., Miao, M., Jiang, B., Cui, S. W., Jia, X., and Zhang, T. (2015). Polysaccharides modification through green technology: Role of ultrasonication towards improving physicochemical properties of (1-3)(1-6)-α-d-glucans. Food Hydrocolloids 50, 166-173. https://doi.org/10.1016/j.foodhyd.2015.04.016
Huang, S. X., Hou, D. Z., Qi, P. X., Wang, Q., Chen, H. L., Ci, L. Y., and Chen, S. (2020). Enzymatic synthesis of non-digestible oligosaccharide catalyzed by dextransucrase and dextranase from maltose acceptor reaction. Biochemical and Biophysical Research Communications 523(3), 651-657. https://doi.org/10.1016/j.bbrc.2019.12.010
Kagimura, F. Y., da Cunha, M. A. A., Theis, T. V., Malfatti, C. R., Dekker, R. F., Barbosa, A. M., and Salomé, K. (2015). Carboxymethylation of (1→ 6)-β-glucan (lasiodiplodan): Preparation, characterization and antioxidant evaluation. Carbohydrate Polymers 127, 390-399. https://doi.org/10.1016/j.carbpol.2015.03.045
Kang, M. S., Yeu, J. E., and Hong, S. P. (2019). Safety evaluation of oral care probiotics Weissella cibaria CMU and CMS1 by phenotypic and genotypic analysis. International Journal of Molecular Sciences 20(11), 2693. https://doi.org/10.3390/ijms20112693
Kanimozhi, J., Moorthy, I. G., Sivashankar, R., and Sivasubramanian, V. (2017). Optimization of dextran production by Weissella cibaria NITCSK4 using Response Surface Methodology-Genetic Algorithm based technology. Carbohydrate Polymers 174, 103-110. https://doi.org/10.1016/j.carbpol.2017.06.021
Kothari, D., and Goyal, A. (2013). Structural characterization of enzymatically synthesized dextran and oligosaccharides from Leuconostoc mesenteroides NRRL B-1426 dextransucrase. Biochemistry (Moscow) 78(10), 1164-1170. https://doi.org/10.1134/S0006297913100118
Kothari, D., and Goyal, A. (2016). Enzyme‐resistant isomalto‐oligosaccharides produced from Leuconostoc mesenteroides NRRL B‐1426 dextran hydrolysis for functional food application. Biotechnology and Applied Biochemistry 63(4), 581-589. https://doi.org/10.1002/bab.1391
Lakra, A. K., Domdi, L., Tilwani, Y. M., and Arul, V. (2020). Physicochemical and functional characterization of mannan exopolysaccharide from Weissella confusa MD1 with bioactivities. International Journal of Biological Macromolecules 143, 797-805. https://doi.org/10.1016/j.ijbiomac.2019.09.139
Li, N., Wang, Y., Zhu, P., Liu, Z., Guo, B., and Ren, J. (2015). Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene. Microbiological Research 171, 73-77. https://doi.org/10.1016/j.micres.2014.12.006
Li, X., Wang, X., Meng, X., Dijkhuizen, L., and Liu, W. (2020). Structures, physico-chemical properties, production and (potential) applications of sucrose-derived α-D-glucans synthesized by glucansucrases. Carbohydrate Polymers, 116818. https://doi.org/10.1016/j.carbpol.2020.116818
Low, K. E., and Howell, P. L. (2018). Gram-negative synthase-dependent exopolysaccharide biosynthetic machines. Current Opinion in Structural Biology 53, 32-44. https://doi.org/10.1016/j.sbi.2018.05.001
Lynch, K. M., Coffey, A., and Arendt, E. K. (2018). Exopolysaccharide producing lactic acid bacteria: Their techno-functional role and potential application in gluten-free bread products. Food Research International 110, 52-61. https://doi.org/10.1016/j.foodres.2017.03.012
Macedo, M. G., Lacroix, C., Gardner, N. J., and Champagne, C. P. (2002). Effect of medium supplementation on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in whey permeate. International Dairy Journal 12(5), 419-426. https://doi.org/10.1016/S0958-6946(01)00173-X
Mahapatra, S., and Banerjee, D. (2013). Optimization of a bioactive exopolysaccharide production from endophytic Fusarium solani SD5. Carbohydrate Polymers 97(2), 627-634. https://doi.org/10.1016/j.carbpol.2013.05.039
Mensink, M. A., Frijlink, H. W., van der Voort Maarschalk, K., and Hinrichs, W. L. (2015). Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydrate Polymers 130, 405-419. https://doi.org/10.1016/j.carbpol.2015.05.026
Miao, M., Huang, C., Jia, X., Cui, S. W., Jiang, B., and Zhang, T. (2015). Physicochemical characteristics of a high molecular weight bioengineered α-D-glucan from Leuconostoc citreum SK24. 002. Food Hydrocolloids 50, 37-43. https://doi.org/10.1016/j.foodhyd.2015.04.009
Mıdık, F., Tokatlı, M., Elmacı, S. B., and Özçelik, F. (2020). Influence of different culture conditions on exopolysaccharide production by indigenous lactic acid bacteria isolated from pickles. Archives of Microbiology 202(4), 875-885. https://doi.org/10.1007/s00203-019-01799-6
Moghannem, S. A., Farag, M., Shehab, A. M., and Azab, M. S. (2018). Exopolysaccharide production from Bacillus velezensis KY471306 using statistical experimental design. Brazilian Journal of Microbiology 49(3), 452-462. https://doi.org/10.1016/j.bjm.2017.05.012
Mozzi, F., Rollan, G., De Giori, G. S., and De Valdez, G. F. (2001). Effect of galactose and glucose on the exopolysaccharide production and the activities of biosynthetic enzymes in Lactobacillus casei CRL 87. Journal of Applied Microbiology 91(1), 160-167. https://doi.org/10.1046/j.1365-2672.2001.01367.x
Musa, A., Miao, M., Zhang, T., and Jiang, B. (2014). Biotransformation of stevioside by Leuconostoc citreum SK24. 002 alternansucrase acceptor reaction. Food Chemistry 146, 23-29. https://doi.org/10.1016/j.foodchem.2013.09.010
Ni, D., Chen, Z., Xu, W., Zhang, W., and Mu, W. (2020). Efficient production of inulin and oligosaccharides using thermostable inulosucrase from Lactobacillus jensenii. International Journal of Biological Macromolecules 165, 1250-1257. https://doi.org/10.1016/j.ijbiomac.2020.10.003
Ni, D., Xu, W., Zhu, Y., Zhang, W., Zhang, T., Guang, C., and Mu, W. (2019). Inulin and its enzymatic production by inulosucrase: Characteristics, structural features, molecular modifications and applications. Biotechnology Advances 37(2), 306-318.. https://doi.org/10.1016/j.biotechadv.2019.01.002
Ni, D., Zhu, Y., Xu, W., Bai, Y., Zhang, T., and Mu, W. (2018). Biosynthesis of inulin from sucrose using inulosucrase from Lactobacillus gasseri DSM 20604. International Journal of Biological Macromolecules 109, 1209-1218. https://doi.org/10.1016/j.ijbiomac.2017.11.120
Öner, E. T., Hernández, L., and Combie, J. (2016). Review of levan polysaccharide: from a century of past experiences to future prospects. Biotechnology Advances 34(5), 827-844. https://doi.org/10.1016/j.biotechadv.2016.05.002
Onilude, A. A., Olaoye, O., Fadahunsi, I. F., Owoseni, A., Garuba, E. O., & Atoyebi, T. (2013). Effects of cultural conditions on dextran production by Leuconostoc spp. International Food Research Journal 20(4), 1645.
Oropeza-De la Rosa, E., López-ávila, L. G., Luna-Solano, G., Urrea-García, G. R., & Cantú-Lozano, D. (2019). Dextran hydrolysis and its rheology in mashes from bioethanol production process. Revista Mexicana de Ingeniería Química. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Oropeza
Ortiz-Soto, M. E., Porras-Domínguez, J. R., Seibel, J., and López-Munguía, A. (2019). A close look at the structural features and reaction conditions that modulate the synthesis of low and high molecular weight fructans by levansucrases. Carbohydrate Polymers, 219 130-142. https://doi.org/10.1016/j.carbpol.2019.05.014
Osińska-Jaroszuk, M., Jarosz-Wilkołazka, A., Jaroszuk-Ściseł, J., Szałapata, K., Nowak, A., Jaszek, M., and Majewska, M. (2015). Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties. World Journal of Microbiology and Biotechnology 31(12), 1823-1844. https://doi.org/10.1007/s11274-015-1937-8
Park, J. H., Ahn, H. J., Kim, S. G., and Chung, C. H. (2013). Dextran-like exopolysaccharide-producing Leuconostoc and Weissella from kimchi and its ingredients. Food Science and Biotechnology 22(4), 1047-1053. https://doi.org/10.1007/s10068-013-0182-x
Polak-Berecka, M., Choma, A., Waśko, A., Górska, S., Gamian, A., and Cybulska, J. (2015). Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources. Carbohydrate Polymers 117, 501-509. https://doi.org/10.1016/j.carbpol.2014.10.006
Porras-Domínguez, J. R., Ávila-Fernández, Á., Rodríguez-Alegría, M. E., Miranda-Molina, A., Escalante, A., González-Cervantes, R., and Munguía, A. L. (2014). Levan-type FOS production using a Bacillus licheniformis endolevanase. Process Biochemistry 49(5), 783-790. https://doi.org/10.1016/j.procbio.2014.02.005
Rosca, I., Petrovici, A. R., Peptanariu, D., Nicolescu, A., Dodi, G., Avadanei, M., and Ciolacu, D. (2018). Biosynthesis of dextran by Weissella confusa and its in vitro functional characteristics. International Journal of Biological Macromolecules 107, 1765-1772. https://doi.org/10.1016/j.ijbiomac.2017.10.048
Ryan, P. M., Ross, R. P., Fitzgerald, G. F., Caplice, N. M., and Stanton, C. (2015). Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food & Function 6(3), 679-693. https://doi.org/10.1039/c4fo00529e
Saadat, Y. R., Khosroushahi, A. Y., and Gargari, B. P. (2019). A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydrate Polymers 217, 79-89. https://doi.org/10.1016/j.carbpol.2019.04.025
Sanalibaba, P., and Çakmak, G. A. (2016). Exopolysaccharides production by lactic acid bacteria. Applied Microbiology: Open Access 2(1000115). https://doi.org/10.4172/2471-9315.1000115
Santos-Moriano, P., Fernandez-Arrojo, L., Poveda, A., Jimenez-Barbero, J., Ballesteros, A. O., and Plou, F. J. (2015). Levan versus fructooligosaccharide synthesis using the levansucrase from Zymomonas mobilis: effect of reaction conditions. Journal of Molecular Catalysis B: Enzymatic 119, 18-25. https://doi.org/10.1016/j.molcatb.2015.05.011
Schmid, J. (2018). Recent insights in microbial exopolysaccharide biosynthesis and engineering strategies. Current Opinion in Biotechnology 53, 130-136. https://doi.org/10.1016/j.copbio.2018.01.005
Seesuriyachan, P., Kuntiya, A., Hanmoungjai, P., and Techapun, C. (2011). Exopolysaccharide production by Lactobacillus confusus TISTR 1498 using coconut water as an alternative carbon source: the effect of peptone, yeast extract and beef extract. Songklanakarin Journal of Science & Technology 33(4).
Seitter, M., Fleig, M., Schmidt, H., and Hertel, C. (2020). Effect of exopolysaccharides produced by Lactobacillus sanfranciscensis on the processing properties of wheat doughs. European Food Research and Technology 246(3), 461-469. https://doi.org/10.1007/s00217-019-03413-x
Siddiqui, N. N., Aman, A., and Qader, S. A. U. (2013). Mutational analysis and characterization of dextran synthesizing enzyme from wild and mutant strain of Leuconostoc mesenteroides. Carbohydrate Polymers 91(1), 209-216. https://doi.org/10.1016/j.carbpol.2012.08.026
Siddiqui, K., Fatima, S., Akhtar, J., Shoeb, E., Badar, U., and Qureshi, F. M. (2020). Evaluation of efficient carbon, nitrogen sources, micro and macro nutrients for dextran production by Weissella cibaria CMGDEX3 by utilizing a modified multifactorial Placket-Burman statistical design. Pakistan Journal of Pharmaceutical Science 33(5), 2351-2353. https://doi.org/10.36721/PJPS.2020.33.5.SUP.2351-2353.1
Sonkar, G., Singh, N., Mall, R. K., Singh, K. K., and Gupta, A. (2020). Simulating the impacts of climate change on sugarcane in diverse Agro-climatic zones of northern India using CANEGRO-Sugarcane model. Sugar Tech 22(3), 460-472. https://doi.org/10.1007/s12355-019-00787-w
Srikanth, R., Reddy, C. H. S., Siddartha, G., Ramaiah, M. J., and Uppuluri, K. B. (2015). Review on production, characterization and applications of microbial levan. Carbohydrate Polymers 120, 102-114. https://doi.org/10.1016/j.carbpol.2014.12.003
Srinivas, B., and Padma, P. N. (2014). Screening of diverse organic, inorganic and natural nitrogen sources for dextran production by Weissella Sps using Plackett-Burman design. International Journal of Scientific & Technology Research 3(4), 319-328.
Tang, X., Liu, N., Huang, W., Cheng, X., Wang, F., Zhang, B., and Li, Z. (2018). Syneresis rate, water distribution, and microstructure of wheat starch gel during freeze‐thaw process: Role of a high molecular weight dextran produced by Weissella confusa QS 813 from traditional sourdough. Cereal Chemistry 95(1), 117-129. https://doi.org/10.1094/CCHEM-08-17-0174-R
Taylan, O., Yilmaz, M. T., and Dertli, E. (2019). Partial characterization of a levan type exopolysaccharide (EPS) produced by Leuconostoc mesenteroides showing immunostimulatory and antioxidant activities. International Journal of Biological Macromolecules 136, 436-444. https://doi.org/10.1016/j.ijbiomac.2019.06.078
Tezgel, N., Kırtel, O., Van den Ende, W., & Oner, E. T. (2020). Fructosyltransferase Enzymes for Microbial Fructan Production. In Microbial Enzymes: Roles and Applications in Industries, pp. 1-39. Springer, Singapore.
Ua-Arak, T., Jakob, F., and Vogel, R. F. (2016). Characterization of growth and exopolysaccharide production of selected acetic acid bacteria in buckwheat sourdoughs. International Journal of Food Microbiology 239, 103-112. https://doi.org/10.1016/j.ijfoodmicro.2016.04.009
Vaningelgem, F., Zamfir, M., Mozzi, F., Adriany, T., Vancanneyt, M., Swings, J., and De Vuyst, L. (2004). Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Applied and Environmental Microbiology 70(2), 900-912. https://doi.org/10.1128/AEM.70.2.900-912.2004
Vidhyalakshmi, R., Valli, N. C., Kumar, G. N., and Sunkar, S. (2016). Bacillus circulans exopolysaccharide: Production, characterization and bioactivities. International Journal of Biological Macromolecules 87, 405-414. https://doi.org/10.1016/j.ijbiomac.2016.02.001
Vinogradov, E., Sadovskaya, I., Courtin, P., Kulakauskas, S., Grard, T., Mahony, J., and Chapot-Chartier, M. P. (2018). Determination of the cell wall polysaccharide and teichoic acid structures from Lactococcus lactis IL1403. Carbohydrate Research 462, 39-44. https://doi.org/10.1016/j.carres.2018.04.002
Vuillemin, M., Claverie, M., Brison, Y., Séverac, E., Bondy, P., Morel, S., and Remaud-Siméon, M. (2016). Characterization of the First α-(1→ 3) Branching Sucrases of the GH70 Family. Journal of Biological Chemistry 291(14), 7687-7702. https://doi.org/10.1074/jbc.M115.688044
Wang, C., Zhang, H. B., Li, M. Q., Hu, X. Q., and Li, Y. (2017). Functional analysis of truncated and site-directed mutagenesis dextransucrases to produce different type dextrans. Enzyme and Microbial Technology 102, 26-34. https://doi.org/10.1016/j.enzmictec.2017.03.011
Wang, X., Shao, C., Liu, L., Guo, X., Xu, Y., and Lü, X. (2017). Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. International Journal of Biological Macromolecules 103, 1173-1184. https://doi.org/10.1016/j.ijbiomac.2017.05.118
Wangpaiboon, K., Waiyaseesang, N., Panpetch, P., Charoenwongpaiboon, T., Nepogodiev, S. A., Ekgasit, S., and Pichayangkura, R. (2020). Characterisation of insoluble α-1, 3-/α-1, 6 mixed linkage glucan produced in addition to soluble α-1, 6-linked dextran by glucansucrase (DEX-N) from Leuconostoc citreum ABK-1. International Journal of Biological Macromolecules 152, 473-482. https://doi.org/10.1016/j.ijbiomac.2020.02.247
Whitney, J. C., and Howell, P. L. (2013). Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends in Microbiology 21(2), 63-72. https://doi.org/10.1016/j.tim.2012.10.001
Xu, Y., Wang, Y., Coda, R., Säde, E., Tuomainen, P., Tenkanen, M., and Katina, K. (2017). In situ synthesis of exopolysaccharides by Leuconostoc spp. and Weissella spp. and their rheological impacts in fava bean flour. International Journal of Food Microbiology 248, 63-71. https://doi.org/10.1016/j.ijfoodmicro.2017.02.012
Yang, Y., Peng, Q., Guo, Y., Han, Y., Xiao, H., and Zhou, Z. (2015a). Isolation and characterization of dextran produced by Leuconostoc citreum NM105 from manchurian sauerkraut. Carbohydrate Polymers 133, 365-372. https://doi.org/10.1016/j.carbpol.2015.07.061
Yang, Y., Galle, S., Le, M. H. A., Zijlstra, R. T., and Gänzle, M. G. (2015b). Feed fermentation with reuteran-and levan-producing Lactobacillus reuteri reduces colonization of weanling pigs by enterotoxigenic Escherichia coli. Applied and Environmental Microbiology 81(17), 5743-5752. https://doi.org/10.1128/AEM.01525-15
Yang, Y., Feng, F., Zhou, Q., Zhao, F., Du, R., Zhou, Z., and Han, Y. (2018). Isolation, purification and characterization of exopolysaccharide produced by Leuconostoc pseudomesenteroides YF32 from soybean paste. International Journal of Biological Macromolecules 114, 529-535. https://doi.org/10.1016/j.ijbiomac.2018.03.162
Yang, Y., Feng, F., Zhou, Q., Zhao, F., Du, R., Zhou, Z., and Han, Y. (2019). Isolation, purification, and characterization of exopolysaccharide produced by Leuconostoc Citreum N21 from dried milk cake. Transactions of Tianjin University 25(2), 161-168. https://doi.org/10.1007/s12209-018-0143-9
Yang, Y., Ma, Y., Hu, X., Cui, S. W., Zhang, T., and Miao, M. (2020). Reuteransucrase-catalytic kinetic modeling and functional characteristics for novel prebiotic gluco-oligomers. Food & Function 11(8), 7037-7047. https://doi.org/10.1039/d0fo00225a
Yilmaz, M. T., İspirli, H., Taylan, O., and Dertli, E. (2020). Synthesis and characterisation of alternan-stabilised silver nanoparticles and determination of their antibacterial and antifungal activities against foodborne pathogens and fungi. LWT 128, 109497.. https://doi.org/10.1016/j.lwt.2020.109497
Zannini, E., Waters, D. M., Coffey, A., and Arendt, E. K. (2016). Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Applied Microbiology and Biotechnology 100(3), 1121-1135. https://doi.org/10.1007/s00253-015-7172-2
Zarour, K., Llamas, M. G., Prieto, A., Ruas-Madiedo, P., Dueñas, M. T., de Palencia, P. F., and Lopez, P. (2017). Rheology and bioactivity of high molecular weight dextrans synthesised by lactic acid bacteria. Carbohydrate Polymers 174, 646-657. https://doi.org/10.1016/j.carbpol.2017.06.113
Zhou, Q., Feng, F., Yang, Y., Zhao, F., Du, R., Zhou, Z., and Han, Y. (2018). Characterization of a dextran produced by Leuconostoc pseudomesenteroides XG5 from homemade wine. International Journal of Biological Macromolecules 107, 2234-2241. https://doi.org/10.1016/j.ijbiomac.2017.10.098
Zhou, Y., Cui, Y., and Qu, X. (2019). Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review. Carbohydrate Polymers 207, 317-332. https://doi.org/10.1016/j.carbpol.2018.11.093
Zikmanis, P., Brants, K., Kolesovs, S., and Semjonovs, P. (2020). Extracellular polysaccharides produced by bacteria of the Leuconostoc genus. World Journal of Microbiology and Biotechnology 36(11), 1-18. https://doi.org/10.1007/s11274-020-02937-9
Published
2021-07-01
How to Cite
Hernandez-Rosas, F., Castilla-Marroquín, J., Loeza-Corte, J., Lizardi-Jimenez, M., & Hernández Martínez, R. (2021). The importance of carbon and nitrogen sources on exopolysaccharide synthesis by lactic acid bacteria and their industrial importance. Revista Mexicana De Ingeniería Química, 20(3), Bio2429. https://doi.org/10.24275/rmiq/Bio2429

Most read articles by the same author(s)