Physical, phytochemical and sensory characteristics of extruded high-fiber breakfast cereals prepared by combining carrot by-products with wheat and oat bran

  • C.I. Delgado-Nieblas Universidad Autónoma de Sinaloa
  • J.A. Ahumada-Aguilar Universidad Autónoma de Sinaloa
  • S. Agramón-Velázquez Universidad Autónoma de Sinaloa
  • J.J. Zazueta-Morales Universidad Autónoma de Sinaloa
  • N. Jacobo-Valenzuela Universidad Autónoma de Sinaloa
  • X.A. Ruiz-Armenta Universidad Autónoma de Sinaloa
  • A. Carrillo-López Universidad Autónoma de Sinaloa
  • A. Quintero-Ramos Universidad Autónoma de Chihuahua
  • C. Barraza-Elenes Universidad Autónoma de Sinaloa
Keywords: breakfast cereals, extrusion, carrot pomace, nutraceutical properties, sensory properties.


High-fiber breakfast cereals are mainly produced by extrusion, and to improve its nutritional/nutraceutical properties, the addition of raw materials rich in bioactive compounds has been suggested. The aim of this study was to evaluate the physical, phytochemical and sensory characteristics of extruded high-fiber breakfast cereals (HFB) prepared from carrot by-products and bran as affected by feed moisture (FM, 19.34–30.66%) and carrot pomace content (CPC, 5.51–22.49%), under a central composite rotatable experimental design. When FM was increased, flexural modulus (FMO, 54-89 MPa), soluble dietary fiber (SDF, 0.64-4.18%), bound phenolic compounds (BPC, 0.02-0.25 mg GAE/g), and DPPH antioxidant activity from BPC extracts (2.07-2.29 µmol TE/g) increased, whereas expansion index (1.09-0.89) diminished. Also, when CPC was elevated, FMO (54-83 MPa), water solubility index (14.21-18.84%), color b* (26.8-28.8), insoluble dietary fiber (19.43-24.71%), SDF (1.12-3.98%), free phenolic (0.56-0.71 mg GAE/g), and flavonoids compounds (0.05-0.31 mg QE/g) increased, whereas BPC decreased (0.25-0.14 mg GAE/g). The HFB presented good (≥ 69%) sensory acceptability. These extruded products presented appropriate physical, phytochemical, and sensory characteristics, whose consumption has potential nutraceutical benefits.


Adom, K. K., & Liu, R. H. (2002). Antioxidant activity of grains. Journal of Agricultural and Food Chemistry 50(21), 6182-6187.
Aguilar‐Palazuelos, E., Zazueta‐Morales, J. D. J., Jiménez‐Arévalo, O. A., & Martínez‐Bustos, F. (2007). Mechanical and structural properties of expanded extrudates produced from blends of native starches and natural fibers of henequen and coconut. Starch‐Stärke 59(11), 533-542.
Alam, M. S., Kumar, S., & Khaira, H. (2015). Effects of extrusion process parameters on a cereal-based ready-to-eat expanded product formulated with carrot pomace. Cereal Foods World 60(6), 287-295.
Anderson, C., & Simsek, S. (2019). How Do Arabinoxylan Films Interact with Water and Soil?. Foods 8(6), 213.
Anderson, R. A., Conway, H. F., Pfeifer, V. F., & Griffin, E. L. (1969). Gelatinization of corn grits by roll-and extrusion-cooking. Cereal Science Today 14, 4–7. 11, 12.
AOAC. (2005). Official Methods of Analysis (18th ed.). Gainthersburg,MD: Association of Official Analytical Chemists.
Baljeet, S. Y., Ritika, B. Y., & Reena, K. (2014). Effect of incorporation of carrot pomace powder and germinated chickpea flour on the quality characteristics of biscuits. International Food Research Journal 21(1), 217.
Basto, G. J., Carvalho, C. W. P., Soares, A. G., Costa, H. T. G. B., Chávez, D. W. H., de Oliveira Godoy, R. L., & Pacheco, S. (2016). Physicochemical properties and carotenoid content of extruded and non-extruded corn and peach palm (Bactris gasipaes, Kunth). LWT-Food Science and Technology 69, 312-318.
Borah, A., Mahanta, C. L., & Kalita, D. (2015). Quality attributes of extruded breakfast cereal from low amylose rice and seeded banana (Musa balbisiana, ABB). Journal of Food Research and Technology 3(1), 23-33.
Borah, A., Mahanta, C. L., & Kalita, D. (2016). Optimization of process parameters for extrusion cooking of low amylose rice flour blended with seeded banana and carambola pomace for development of minerals and fiber rich breakfast cereal. Journal of Food Science and Technology 53(1), 221-232.
Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28(1), 25–30.
Brennan, M. A., Derbyshire, E., Tiwari, B. K., & Brennan, C. S. (2013). Integration of β-glucan fibre rich fractions from barley and mushrooms to form healthy extruded snacks. Plant Foods for Human Nutrition 68(1), 78-82.
Călinoiu, L., & Vodnar, D. (2018). Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients 10(11), 1615.
Camire, M.E., Violette, D., Dougherty, M.P., & McLaughlin, M.A. (1997). Potato peels dietary composition: Effects of peeling and extrusion cooking processes. Journal of Agricultural and Food Chemistry 45, 1404–1408.
Chanvrier, H., Jakubczyk, E., Gondek, E., & Gumy, J. C. (2014). Insights into the texture of extruded cereals: structure and acoustic properties. Innovative Food Science & Emerging Technologies 24, 61-68.
Charunuch, C., Limsangouan, N., Prasert, W., & Butsuwan, P. (2011). Optimization of extrusion conditions for functional ready-to-eat breakfast cereal. Food Science and Technology Research 17(5), 415-422.
Charunuch, C., Limsangouan, N., Prasert, W., & Wongkrajang, K. (2014). Optimization of extrusion conditions for ready-to-eat breakfast cereal enhanced with defatted rice bran. International Food Research Journal 21(2), 713-722.
Delgado-Nieblas, C. I., Zazueta-Morales, J. J., Aguilar-Palazuelos, E., Jacobo-Valenzuela, N., Aguirre-Tostado, F. S., Carrillo-López, A., Ruiz-Armenta X. A., & Telis-Romero, J. (2018). Physical, microstructural and sensory characteristics of extruded and microwave-expanded snacks added with dehydrated squash. Revista Mexicana de Ingeniería Química 17(3), 805-821.
Dewanto, V., Wu, X., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry 50(10), 3010-3014.
Ding, Q. B., Ainsworth, P., Tucker, G., & Marson, H. (2005). The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. Journal of Food Engineering 66(3), 283-289.
Dos Santos, P. A., Caliari, M., Júnior, M. S. S., Silva, K. S., Viana, L. F., Garcia, L. G. C., & de Lima, M. S. (2019). Use of agricultural by-products in extruded gluten-free breakfast cereals. Food Chemistry 124956.
Ergun, M., & Süslüoğlu, Z. (2018). Evaluating carrot as a functional food. Middle East Journal of Science, 4(2) 113-119.
Gayas, B., Shukla, R. N., & Khan, B. M. (2012). Physico-chemical and sensory characteristics of carrot pomace powder enriched defatted soyflour fortified biscuits. International Journal of Scientific and Research Publications 2(8), 1-5.
Gong, L., Cao, W., Chi, H., Wang, J., Zhang, H., Liu, J., & Sun, B. (2018). Whole cereal grains and potential health effects: Involvement of the gut microbiota. Food Research International 103, 84-102.
Gopirajah, R., & Muthukumarappan, K. (2018). Effect of extrusion process conditions on the physical properties of tef‐oat healthy snack extrudates. Journal of Food Processing and Preservation 42(3), e13559.
Gujska, E., & Khan, K. (1990). Effect of temperature on properties of extrudates from high starch fractions of navy, pinto and garbanzo beans. Journal of Food Science 55(2), 466-469.
Gull, A., Prasad, K., & Kumar, P. (2015). Effect of millet flours and carrot pomace on cooking qualities, color and texture of developed pasta. LWT-Food Science and Technology 63(1), 470-474.
Guven, O., Sensoy, I., Senyuva, H., & Karakaya, S. (2018). Food processing and digestion: The effect of extrusion process on bioactive compounds in extrudates with artichoke leaf powder and resulting in vitro cynarin and cynaroside bioaccessibility. LWT-Food Science and Technology 90, 232-237.
Heimler, D., Vignolini, P., Dini, M. G., Vincieri, F. F., & Romani, A. (2006). Antiradical activity and polyphenol composition of local brassicaceae edible varieties. Food Chemistry 99(3), 464–469.
Hsieh, F., Peng, I. C., & Huff, H. E. (1990). Effects of salt, sugar and screw speed on processing and product variables of corn meal extruded with a twin‐screw extruder. Journal of Food Science 55(1), 224–227.
Jabbar, S., Abid, M., Wu, T., Hashim, M. M., Saeeduddin, M., Hu, B., Lei, S., & Zeng, X. (2015). Ultrasound‐assisted extraction of bioactive compounds and antioxidants from carrot pomace: A response surface approach. Journal of Food Processing and Preservation 39(6), 1878-1888.
Jalgaonkar, K., Jha, S. K., & Mahawar, M. K. (2018). Influence of incorporating defatted soy flour, carrot powder, mango peel powder, and moringa leaves powder on quality characteristics of wheat semolina‐pearl millet pasta. Journal of Food Processing and Preservation 42(4), e13575.
Kaisangsri, N., Kowalski, R. J., Wijesekara, I., Kerdchoechuen, O., Laohakunjit, N., & Ganjyal, G. M. (2016). Carrot pomace enhances the expansion and nutritional quality of corn starch extrudates. LWT-Food Science and Technology 68, 391-399.
Kumar, N., & Kumar, K. (2011). Development of carrot pomace and wheat flour based cookies. Journal of Pure and Applied Science and Technology 1(1), 5-11.
Leyva-Corral, J., Quintero-Ramos, A., Camacho-Dávila, A., Zazueta-Morales, J. J., Aguilar-Palazuelos, E., Ruiz-Gutiérrez, M. G., & Ruiz-Anchondo, T. (2016). Polyphenolic compound stability and antioxidant capacity of apple pomace in an extruded cereal. LWT-Food Science and Technology 65, 228–236.
Lim, J. (2011). Hedonic scaling: A review of methods and theory. Food Quality and Preference 22, 733-747.
Majzoobi, M., Vosooghi Poor, Z., Mesbahi, G., Jamalian, J., & Farahnaky, A. (2017). Effects of carrot pomace powder and a mixture of pectin and xanthan on the quality of gluten‐free batter and cakes. Journal of texture studies 48(6), 616-623.
Martín-Cabrejas, M. A., Jaime, L., Karanja, C., Downie, A. J., Parker, M. L., Lopez-Andreu, F. J., & Waldron, K. W. (1999). Modifications to physicochemical and nutritional properties of hard-to-cook beans (Phaseolus vulgaris L.) by extrusion cooking. Journal of Agricultural and Food Chemistry 47(3), 1174-1182.
Mesías, M., Sáez-Escudero, L., Morales, F. J., & Delgado-Andrade, C. (2019). Occurrence of furosine and hydroxymethylfurfural in breakfast cereals. Evolution of the Spanish market from 2006 to 2018. Foods 8(5), 158.
Miller, H. E., Rigelhof, F., Marquart, L., Prakash, A., & Kanter, M. (2000). Whole-grain products and antioxidants. Cereal Foods World 45(2), 59-63.
Offiah, V., Kontogiorgos, V., & Falade, K. O. (2018). Extrusion processing of raw food materials and by-products: A review. Critical Reviews in Food Science and Nutrition 1-20.
Oladiran, D. A., Emmambux, M. N., & de Kock, H. L. (2018). Extrusion cooking of cassava-soy flour with 200 g/kg wheat bran promotes slower oral processing during consumption of the instant porridge and higher derived satiety. LWT-Food Science and Technology 97, 778-786.
Oliveira, L. C., Schmiele, M., & Steel, C. J. (2017). Development of whole grain wheat flour extruded cereal and process impacts on color, expansion, and dry and bowl-life texture. LWT-Food Science and Technology 75, 261-270.
Oniszczuk, A., Kasprzak, K., Wójtowicz, A., Oniszczuk, T., & Olech, M. (2019). The impact of processing parameters on the content of phenolic compounds in new gluten-free precooked buckwheat pasta. Molecules 24(7), 1262.
Patil, S., Brennan, M., Mason, S., & Brennan, C. (2016). The effects of fortification of legumes and extrusion on the protein digestibility of wheat based snack. Foods 5(2), 26.
Rashid, S., Rakha, A., Anjum, F. M., Ahmed, W., & Sohail, M. (2015). Effects of extrusion cooking on the dietary fibre content and Water Solubility Index of wheat bran extrudates. International Journal of Food Science & Technology 50(7), 1533-1537.
Saleh, A. S., Wang, P., Wang, N., Yang, S., & Xiao, Z. (2019). Technologies for enhancement of bioactive components and potential health benefits of cereal and cereal-based foods: Research advances and application challenges. Critical Reviews in Food Science and Nutrition 59(2), 207-227.
Salehi, F., Kashaninejad, M., Akbari, E., Sobhani, S. M., & Asadi, F. (2016). Potential of sponge cake making using infrared–hot air dried carrot. Journal of Texture Studies 47(1), 34-39.
Samard, S., Singkhornart, S., & Ryu, G. H. (2017). Effects of extrusion with CO2 injection on physical and antioxidant properties of cornmeal-based extrudates with carrot powder. Food Science and Biotechnology 26(5), 1301-1311.
Santana-Gálvez, J., Pérez-Carrillo, E., Velázquez-Reyes, H. H., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2016). Application of wounding stress to produce a nutraceutical-rich carrot powder ingredient and its incorporation to nixtamalized corn flour tortillas. Journal of Functional Foods 27, 655-666.
Talukder, S., & Sharma, D. P. (2010). Development of dietary fiber rich chicken meat patties using wheat and oat bran. Journal of Food Science and Technology 47(2), 224–229.
Upadhyay, A., Sharma, H. K., & Sarkar, B. C. (2010). Optimization of carrot pomace powder incorporation on extruded product quality by response surface methodology. Journal of Food Quality 33(3), 350-369.
Weiss, S. L., Foerster, K., & Hudon, J. (2012). Pteridine, not carotenoid, pigments underlie the female-specific orange ornament of striped plateau lizards (Sceloporus virgatus). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 161(2), 117-123.
Yadav, S., Pathera, A. K., Islam, R. U., Malik, A. K., & Sharma, D. P. (2018). Effect of wheat bran and dried carrot pomace addition on quality characteristics of chicken sausage. Asian-Australasian Journal of Animal Sciences 31(5), 729.
Yao, N., White, P. J., & Alavi, S. (2011). Impact of β‐glucan and other oat flour components on physico‐chemical and sensory properties of extruded oat cereals. International Journal of Food Science & Technology 46(3), 651-660.
Ying, D., Hlaing, M. M., Lerisson, J., Pitts, K., Cheng, L., Sanguansri, L., & Augustin, M. A. (2017). Physical properties and FTIR analysis of rice-oat flour and maize-oat flour based extruded food products containing olive pomace. Food research international 100, 665-673.
Zeng, Z., Liu, C., Luo, S., Chen, J., & Gong, E. (2016). The profile and bioaccessibility of phenolic compounds in cereals influenced by improved extrusion cooking treatment. Plos One 11(8), e0161086.
How to Cite
Delgado-Nieblas, C., Ahumada-Aguilar, J., Agramón-Velázquez, S., Zazueta-Morales, J., Jacobo-Valenzuela, N., Ruiz-Armenta, X., Carrillo-López, A., Quintero-Ramos, A., & Barraza-Elenes, C. (2021). Physical, phytochemical and sensory characteristics of extruded high-fiber breakfast cereals prepared by combining carrot by-products with wheat and oat bran. Revista Mexicana De Ingeniería Química, 20(3), Alim2441: 1-18.
Food Engineering

Most read articles by the same author(s)