High removal of toxic crystal violet dye using a thermally treated activated carbon fiber felt

  • O.G. Rojas-Valencia IPN
  • M. Estrada-Flores
  • C.M. Reza-San-Germán
  • J.L. Ledezma-Martínez
  • J. Hernández-Fuentes
Keywords: Activated carbon fiber felt, Reusing, Calcination, Removal, Crystal violet.

Abstract

In the present work, the reuse of activated carbon fiber felt (ACFF) is suggested to remove the cationic methyl violet, commonly called as Crystal Violet (CV), dye present in a synthetic solution. The morphological structure of the ACFF was analyzed by High Resolution Scanning Electron Microscopy (HRSEM). The dye removal processes were carried out discontinuously at room temperature and pH of 10, by reusing the FFCA up to 10 times. After each removal process, the ACFF was thermally treated by calcination that allowed to transform the adsorbed dye into CO and CO2 wherewith its useful lifetime was extended. The results show that the adsorption process follows the Langmuir isotherm with pseudo-first order kinetics, which suggests that a chemisorption was carried out by the covalent attraction between the carbonyl groups of the ACFF and the cationic species of the dye. The novelty of the work focuses on the reuse of the ACFF for up to 10 removal cycles with a high removal rate, which can lead to a reduction in the acquisition costs of the adsorbent material.

References

Acevedo-García, V., Rosales, E., Puga, A., Pazos, M., & Sanromán, M. A. (2020). Synthesis and use of efficient adsorbents under the principles of circular economy: Waste valorisation and electroadvanced oxidation process regeneration. Separation and Purification Technology, 242(November 2019), 116796. https://doi.org/10.1016/j.seppur.2020.116796
Ayala J. A., Castillo C. O., R. R. S. (2017). Ultrasonic, ultraviolet and hybrid catalytic processes for the degradation of Rhodamine B dye: Decolorization kinetics. Revista Mexicana de Ingeniería Química, 16(2), 521–529. http://www.redalyc.org/articulo.oa?id=62029966013
Bruggen, B. Van Der. (2020). Encyclopedia of Membranes. Encyclopedia of Membranes. https://doi.org/10.1007/978-3-642-40872-4
Ehyaee, M., Safa, F., & Shariati, S. (2017). Magnetic nanocomposite of multi-walled carbon nanotube as effective adsorbent for methyl violet removal from aqueous solutions: Response surface modeling and kinetic study. Korean Journal of Chemical Engineering, 34(4), 1051–1061. https://doi.org/10.1007/s11814-016-0353-6
El-Ashtoukhy, E. S. Z., Amin, N. K., Abd El-Latif, M. M., Bassyouni, D. G., & Hamad, H. A. (2017). New insights into the anodic oxidation and electrocoagulation using a self-gas stirred reactor: A comparative study for synthetic C.I Reactive Violet 2 wastewater. Journal of Cleaner Production, 167, 432–446. https://doi.org/10.1016/j.jclepro.2017.08.174
El-Shafey, S. E., Fathy, N. A., & Khalil, L. B. (2017). Abatement of p-nitrophenol from aqueous solutions using oxidized carbon fiber. Egyptian Journal of Chemistry, 60(6), 995–1006. https://doi.org/10.21608/ejchem.2017.1861.1154
Febrianto, G., Karisma, D., & Mangindaan, D. (2019). Polyetherimide nanofiltration membranes modified by interfacial polymerization for treatment of textile dyes wastewater. IOP Conference Series: Materials Science and Engineering, 622(1). https://doi.org/10.1088/1757-899X/622/1/012019
Garzón-Pérez A. S., Paredes-Carrera S. P., Martínez-Gutiérrez H., Cayetano-Castro N., Sánchez-Ochoa J. C., P.-G. R. M. (2020). Effect of combined microwave-ultrasound irradiation in the structure and morpfology of hydrotalcite like compounds Al/Mg-CH3COO and its evaluation in the sorption of a reactive dye. Revista Mexicana de Ingeniería Química, 19(1), 363–375. https://doi.org/https://doi.org/10.24275/rmiq/Mat567
González-López Martín Esteban, Laureano-Anzaldo Cesar Mario, Pérez-Fonseca Aida Alejandra, Gómez César, R.-O. J. R. (2021). Congo red adsorption with cellulose-graphene nanoplatelets beads by differential column batch reactor. Journal of Environmental Chemical Engineering, 9(2). https://doi.org/https://doi.org/10.1016/j.jece.2021.105029.
Gunawan, F. M., Mangindaan, D., Khoiruddin, K., & Wenten, I. G. (2019). Nanofiltration membrane cross-linked by m-phenylenediamine for dye removal from textile wastewater. Polymers for Advanced Technologies, 30(2), 360–367. https://doi.org/10.1002/pat.4473
Horakova, E., Vyskocil, V., & Barek, J. (2016). Interaction study of methyl violet 2B with DNA and voltammetric determination of DNA in aqueous solutions. Monatshefte Fur Chemie, 147(1), 119–126. https://doi.org/10.1007/s00706-015-1590-9
Ibupoto, A. S., Qureshi, U. A., Ahmed, F., Khatri, Z., Khatri, M., Maqsood, M., Brohi, R. Z., & Kim, I. S. (2018). Reusable carbon nanofibers for efficient removal of methylene blue from aqueous solution. Chemical Engineering Research and Design, 136, 744–752. https://doi.org/10.1016/j.cherd.2018.06.035
Ji, J., Kakade, A., Yu, Z., Khan, A., Liu, P., & Li, X. (2020). Anaerobic membrane bioreactors for treatment of emerging contaminants: A review. Journal of Environmental Management, 270(March), 110913. https://doi.org/10.1016/j.jenvman.2020.110913
Lairini, S., El Mahtal, K., Miyah, Y., Tanji, K., Guissi, S., Boumchita, S., & Zerrouq, F. (2017). The adsorption of Crystal violet from aqueous solution by using potato peels (Solanum tuberosum): Equilibrium and kinetic studies. Journal of Materials and Environmental Science, 8(9), 3252–3261.
Lakshmi Prasanna, V., & Rajagopalan, V. (2016). A New Synergetic Nanocomposite for Dye Degradation in Dark and Light. Scientific Reports, 6(December), 1–10. https://doi.org/10.1038/srep38606
Lira-Pérez J., Hidalgo-Lara M. E., Meléndez-Estrada J., González- De Jesús B. J., R.-V. R. (2019). The contribution of H2O2 produced by Aspergillus niger in Vat blue dye discoloration: enhancement by a statiscals optimization methodology. Revista Mexicana de Ingeniera Quimica, 18(2), 707–717. https://doi.org/https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Lira
Liu, Q. X., Zhou, Y. R., Wang, M., Zhang, Q., Ji, T., Chen, T. Y., & Yu, D. C. (2019). Adsorption of methylene blue from aqueous solution onto viscose-based activated carbon fiber felts: Kinetics and equilibrium studies. Adsorption Science and Technology, 37(3–4), 312–332. https://doi.org/10.1177/0263617419827437
Lu, Y. C., Priyantha, N., Lim, L. B. L., Mahadi, A. H., & Zain, N. A. M. (2020). Ipomoea aquatica root as a new potential adsorbent to remove methyl violet 2b dye in simulated dye contaminated wastewater. Desalination and Water Treatment, 197, 368–378. https://doi.org/10.5004/dwt.2020.25933
M. Solís-Oba, M. Eloy-Juárez, M. Teutli, J. L. N. e I. G. (2009). Comparison of Advanced Techniques for the Treatment of an indigo model solution: Electro incineration, chemical coagulation and enzymatic. Revista Mexicana de Ingeniería Química, 8(3), 275–282.
Márquez-Ramírez, E., Michtchenko, A., & Zacahua-Tlacuatl, G. (2019). Effects of radiation of CO2 laser on natural dolomite for thedegradation of azo dye reactive black 5 by photocatalysis. Revista Mexicana de Ingeniera Quimica, 18(2), 555–569. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Marquez
Mendoza-Basilio, C. A., Yee-Madeira, H., Ramírez-Rodríguez, T., & Colindres-Bonilla, P. (2017). Oxidation of textile dye reactive yellow 84 in aqueous solution in order to reuse treated water. Revista Mexicana de Ingeniera Quimica, 16(2), 581–589.
Mittal, H., Babu, R., & Alhassan, S. M. (2020). Utilization of gum xanthan based superporous hydrogels for the effective removal of methyl violet from aqueous solution. International Journal of Biological Macromolecules, 143, 413–423. https://doi.org/10.1016/j.ijbiomac.2019.11.008
Nooraee Nia, N., Rahmani, M., Kaykhaii, M., & Sasani, M. (2017). Evaluation of Eucalyptus leaves as an adsorbent for decolorization of Methyl Violet (2B) dye in contaminated waters: Thermodynamic and Kinetics model. Modeling Earth Systems and Environment, 3(2), 825–829. https://doi.org/10.1007/s40808-017-0338-4
Pak, V. N., Kurova, A. A., & Borisov, A. N. (2017). Methyl violet as an indicator of perfluorosulfonic membrane acid properties. Russian Journal of General Chemistry, 87(6), 1217–1219. https://doi.org/10.1134/S1070363217060184
Pourali, P., Behzad, M., Arfaeinia, H., Ahmadfazeli, A., Afshin, S., Poureshgh, Y., & Rashtbari, Y. (2021). Removal of acid blue 113 from aqueous solutions using low-cost adsorbent: adsorption isotherms, thermodynamics, kinetics and regeneration studies. Separation Science and Technology (Philadelphia), 00(00), 1–13. https://doi.org/10.1080/01496395.2020.1867583
Rabbi, A., Dadashian, F., & Soleimani, M. (2020). Evaluation of microporous acrylic-based activated carbon fibers as novel adsorbents for methylene blue removal. Desalination and Water Treatment, 179, 288–301. https://doi.org/10.5004/dwt.2020.24981
Rahimian, R., & Zarinabadi, S. (2020). A review of Studies on the Removal of Methylene Blue Dye from Industrial Wastewater Using Activated Carbon Adsorbents Made from Almond Bark. Progress in Chemical and Biochemical Research Journal Homepage, 3(3), 251–268. www.pcbiochemres.com
Raman, C. D., & Kanmani, S. (2016). Textile dye degradation using nano zero valent iron: A review. Journal of Environmental Management, 177, 341–355. https://doi.org/10.1016/j.jenvman.2016.04.034
Rojas-Valencia O. G., M. Estrada-Flores, C. M. Reza-San Germán, E. Torres-Santillán, J. Hernández-Fuentes, J. L. L.-M. (2020). E ect of thermal treatment of activated carbon fiber felt for reuse in removal of methylene blue from a synthetic wastewater. Revista Mexicana de Ingeniería Química, 19(3), 1515–1526. https://doi.org/https://doi.org/10.24275/rmiq/Mat1184
Romero Cano, Gonzalez Gutierrez, B. P. (2016). Preparation of Orange Peels Drop and Chemical Modification for Its Use As Biosorbent of. Revista Mexicana de Ingenieria Quimica, 15(2), 481–491.
Sabna, V., Thampi, S. G., & Chandrakaran, S. (2016). Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: Equilibrium and kinetic studies. Ecotoxicology and Environmental Safety, 134, 390–397. https://doi.org/10.1016/j.ecoenv.2015.09.018
Sen, S. K., Raut, S., Bandyopadhyay, P., & Raut, S. (2016). Fungal decolouration and degradation of azo dyes: A review. Fungal Biology Reviews, 30(3), 112–133. https://doi.org/10.1016/j.fbr.2016.06.003
Singh, G., Sharma, M., & Vaish, R. (2020). Exploring the piezocatalytic dye degradation capability of lithium niobate. Advanced Powder Technology, 31(4), 1771–1775. https://doi.org/10.1016/j.apt.2020.01.031
Singh, S., Lo, S. L., Srivastava, V. C., & Hiwarkar, A. D. (2016). Comparative study of electrochemical oxidation for dye degradation: Parametric optimization and mechanism identification. Journal of Environmental Chemical Engineering, 4(3), 2911–2921. https://doi.org/10.1016/j.jece.2016.05.036
Solís, M., Gil, J. L., Solís, A., Pérez, H. I., Manjarrez, N., & Perdomo, M. (2013). El proceso de sedimentación como una aplicación sencilla para reducir contaminantes en efluentes textiles. Revista Mexicana de Ingeniera Qumica, 12(3), 585–594.
Sophia A., C., & Lima, E. C. (2018). Removal of emerging contaminants from the environment by adsorption. Ecotoxicology and Environmental Safety, 150(December 2017), 1–17. https://doi.org/10.1016/j.ecoenv.2017.12.026
Taheran, M., Naghdi, M., Brar, S. K., Verma, M., & Surampalli, R. Y. (2018). Emerging contaminants: Here today, there tomorrow! Environmental Nanotechnology, Monitoring and Management, 10(May), 122–126. https://doi.org/10.1016/j.enmm.2018.05.010
Tang, D., Zheng, Z., Lin, K., Luan, J., & Zhang, J. (2007). Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber. Journal of Hazardous Materials, 143(1–2), 49–56. https://doi.org/10.1016/j.jhazmat.2006.08.066
Trellu, C., Oturan, N., Keita, F. K., Fourdrin, C., Pechaud, Y., & Oturan, M. A. (2018). Regeneration of Activated Carbon Fiber by the Electro-Fenton Process. Environmental Science and Technology, 52(13), 7450–7457. https://doi.org/10.1021/acs.est.8b01554
Verduzco-Navarro I. P., Jasso-Gastinel C. F., Ríos-Donato N., M. E. (2020). Chemical activation with phosphoric acid. adsorption of methylene blue. Revista Mexicana de Ingeniería Química, 19(3), 1401–1411. https://doi.org/https://doi.org/10.24275/rmiq/IA1123
Published
2021-07-02
How to Cite
Rojas-Valencia, O., Estrada-Flores, M., Reza-San-Germán, C., Ledezma-Martínez, J., & Hernández-Fuentes, J. (2021). High removal of toxic crystal violet dye using a thermally treated activated carbon fiber felt. Revista Mexicana De Ingeniería Química, 20(3), Mat2444. https://doi.org/10.24275/rmiq/Mat2444

Most read articles by the same author(s)