Conditioning and use of prickly pear peels for the production of lignocellulosic enzymes by Aspergillus niger sp. on solid-state cultures

  • Z. Vargas-Solano
  • M.A. Martínez-Trujillo
  • I. Membrillo-Venegas
Keywords: laccases, xylanases, solid-state culture, particle characterization, hornification.


Aspergillus spp produced laccases and xylanases when grown on a solid-state culture on prickly pear peels. Peels were sun-dried, or dried in an oven at different temperatures. The drying rate, the coloration of the dried material, and the degradation susceptibility depended on the drying mode and on temperature. Drying rate was slower for sun-dried peels, and increased at higher temperatures on oven-dried peels. Sun-dried peels were brown, while oven-dried peels were greenish. Fungal cultures grew faster on sun-dried peels and reached highest enzymatic activities earlier. Oven drying caused hornification of peels, delaying both fungal growth and enzyme production. In our study laccases titers were higher than in previous studies using various agricultural residues. Prickly pear peels are a convenient substrate to produce a lignocelulolytic extract that can be used in several bioprocesses.


Abd El-Rahim, W. M., Moawad, H., Hashem, M. M., Gebreil, G. M., & Zakaria, M. (2020). Highly efficient fungal pectinase and laccase producers among isolates from flax retting liquor. Biocatalysis and Agricultural Biotechnology, 25, 101570. Akanni, G., Ntuli, V., du Preez, J. (2014). Cactus pear biomass, a potential lignocellulose raw material for Single Cell Protein production (SCP): A Review. Inernational Journal of Current Microbiology and Applied Science. 3(7), 171-197.

Abu, E. A., & Ado, S. A. (2004). Comparative studies on the effect of organic and inorganic nitrogen supplementation of millet and sorghum pomace on the production of three industrial enzymes by Aspergillus niger SL. 1. BIOKEMISTRI.

Abu Yazid, N., Barrena, R., Komilis, D., Sánchez, A. (2017). Solid-state fermentation as a novel paradigm for organic waste valorization: a review. Sustainability 9(2), 224.

Al-Farsi, M., Alasalvar, C., Morris, A., Baron, M., Shahidi, F. (2005). Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. Journal of Agricultural and Food Chemistry. 53(19), 7592-7599.

Baltierra-Trejo, E., Silva-Espino, E., Márquez-Benavides, L., Sánchez-Yáñez, J. M. (2016). Inducción de la degradación de lignina de paja de trigo en aromáticos por Aspergillus spp. y Penicillium chrysogenum. Journal of the Selva Andina Research Society 7(1), 10-19

Bertrand, B. Martínez-Morales, F., Trejo-Hernández, M. R. (2013). Fungal laccases: induction and production. Revista Mexicana de Ingeniería Química. 12(3), 473-488.

Brink, D. P., Ravi, K., Lidén, G. Gorwa-Grauslund, M. F. (2019). Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database. Applied Microbiology and Biotechnology. 103(10), 3979-4002.

Calle, J., Villegas, R., Álvarez, M. T., Gimenez, A., Terrazas, E. L. (2007). Optimización de las condiciones de cultivo para la producción de enzimas Redox por Aspergillus niger QD y Pestalotia sp 2i QJR. Biofarbo 7, 29-36.

Chaparro-Montoya, E. E., Mayta-Huiza, D. A., Llamoca-Domínguez, E., Choquecahua-Mamani, D. and Otero-Nole, K. S. (2019). Comparación del proceso de secado de los residuos de cáscara de tuna y corona de piña. Revista de Ciencia y Tecnología para el Desarrollo-UJCM 5(9), 4-9.

Córdova-López, J., Gutiérrez-Rojas, M., Huerta, S., Saucedo-Castaneda, G., Favela-Torres, E. (1996). Biomass estimation of Aspergillus niger growing on real and model supports in solid state fermentation. Biotechnology Techniques, 10(1), 1-6.

Costa, J. A., Treichel, H., Kumar, V., Pandey, A. (2018). Advances in solid-state fermentation. In: Current Dev. Biotechnol. Bioeng, (A. Pandey, C. Larroche and C.R. Soccol, eds.), Pp. 1-17. Elsevier.

Daly, P., van Munster, J. M., Kokolski, M., Sang, F., Blythe, M. J., Malla, S., Archer, D. B. (2017). Transcriptomic responses of mixed cultures of ascomycete fungi to lignocellulose using dual RNA-seq reveal inter-species antagonism and limited beneficial effects on CAZyme expression. Fungal Genetics and Biology. 102, 4-21.

Dávila-Hernández, G., Sánchez-Pardo, M. E., Gutiérrez-López, G. F., Necoechea-Mondragon, H., Ortiz-Moreno, A. (2019). Effect of microwave pretreatment on bioactive compounds extraction from xoconostle (Opuntia joconostle) by-products. Revista Mexicana de Ingeniería Química, 18(1), 191-204.

Dorta, B., Ertola, R. J., Arcas, J. (1996). Characterization of growth and sporulation of Metarhizium anisopliae in solid-substrate fermentation. Enzyme and Microbial Technology. 19, 434-439.

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3), 350-356.

Durán-Hinojosa, U., Soto-Vázquez, L., Membrillo-Venegas, I., García-Rivero, M., Zafra-Jiménez, G., Vigueras-Carmona, S. E., Martínez-Trujillo, M. A. (2017). Solid-state culture for lignocellulases production in fermentation process. In: Fermentation Processes, (Angela Faustino Jozala, Ed.), Pp. 255–269. Intechopen.

Ferreira, D., Da Silva, J. A. L., Pinto, G., Santos, C., Delgadillo, I., Coimbra, M. A. (2008). Effect of sun-drying on microstructure and texture of S. Bartolomeu pears (Pyrus communis L.) European Food Research and Technology. 226 (6), 1545-1552.

García-Reyes, M., Beltrán-Hernández, R. I., Vázquez-Rodríguez, G. A., Coronel-Olivares, C., Medina-Moreno, S. A., Juárez-Santillán, L. F., Lucho-Constantino, C. A. (2017). Formation, morphology and biotechnological applications of filamentous fungal pellets: a review. Revista Mexicana de Ingeniería Química, 16(3), 703-720.

Gouws, C. A., D’Cunha, N. M., Georgousopoulou, E. N., Mellor, D. D., & Naumovski, N. (2019). The effect of different drying techniques on phytochemical content and in vitro antioxidant properties of Australian‐grown prickly pears (Opuntia ficus indica). Journal of Food Processing and Preservation, 43(3), e13900.

Grande Tovar, C. D. (2016). Valoración biotecnológica de residuos agrícolas y agroindustriales. Editorial Bonaventuriana. Cali Colombia.

Habibi, Y., Heyraud, A., Mahrouz, M., Vignon, M. R. (2004). Structural features of pectic polysaccharides from the skin of Opuntia ficus-indica prickly pear fruits. Carbohydrate Research. 339(6), 1119-1127.

Hamid, A., Hussain, Z., Tayyab, M., Zafar, A., Nawaz, M., Ali, S., Rehman, A., & Aftab, M. (2021). Production and characterization of a thermostable extracellular esterase from Aspergillus niger. Revista Mexicana de Ingeniería Química, 20(2), 839-852.

Kamiloglu, S., Capanoglu, E. (2015). Polyphenol content in figs (Ficus carica L.): Effect of sun-drying. International Journal of Food Properties. 18(3), 521-535.

Khanahmadi, M., Arezi, I., Amiri, M. S., Miranzadeh, M. (2018). Bioprocessing of agro-industrial residues for optimization of xylanase production by solid-state fermentation in flask and tray bioreactor. Biocatalysis and Agricultural Biotechnology. 13, 272-282.

Lahsasni, S., Kouhila, M., Mahrouz, M., Idlimam, A., Jamali, A. (2004). Thin layer convective solar drying and mathematical modeling of prickly pear peels (Opuntia ficus indica). Energy 29(2), 211-224.

Larroche, C., Gross, J. (1992). Characterization of the Growth and Sporulation Behavior of Penicillium roquefortii in solid substrate fermentation by Material and Bioenergetic Balances. Biotechnology and Bioengineering. 39, 815-827.

López-Gómez, J. P., Manan, M. A., Webb, C. (2020). Solid-state fermentation of food industry wastes. In Food Industry Wastes (pp. 135-161). Academic Press.

López-Legarda, X., Taramuel-Gallardo, A., Arboleda-Echavarría, C., Segura-Sánchez, F., Restrepo-Betancur, L. F. (2017). Comparación de métodos que utilizan ácido sulfúrico para la determinación de azúcares totales. Revista Cubana de Química. 29(2), 180-198.

Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry. 193(1), 265-275.

Luo, X., Zhu, J. Y. (2011). Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzyme and Microbial Technology. 48(1), 92-99.

Ma, Y., Ling, T. J., Su, X. Q., Jiang, B., Nian, B., Chen, L. J., ... & Zhao, M. (2021). Integrated proteomics and metabolomics analysis of tea leaves fermented by Aspergillus niger, Aspergillus tamarii and Aspergillus fumigatus. Food Chemistry, 334, 127560.

Magalhães Jr, A. I., De Carvalho, J. C., de Melo Pereira, G. V., Karp, S. G., Câmara, M. C., Medina, J. D. C., Soccol, C. R. (2019). Lignocellulosic biomass from agro‐industrial residues in South America: current developments and perspectives. Biofuels, Bioproducts and Biorefinery. 13(6), 1505-1519.

Mäkelä, M. R., Marinović, M., Nousiainen, P., Liwanag, A. J., Benoit, I., Sipilä, J., ... & Hilden, K. S. (2015). Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass. Advances in applied microbiology, 91, 63-137.

Martínez, Á. T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F. Martínez, M.J., Gutiérrez, A. & del Río Andrade, J. C. (2005). Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology. 8:195-204

Martínez, A. T., Ruiz-Dueñas, F. J., Camarero, S., Serrano, A., Linde, D., Lund, H., ... & Alcalde, M. (2017). Oxidoreductases on their way to industrial biotransformations. Biotechnology advances. 35(6), 815-831.

Martínez-Trujillo, M. A., Bautista-Rangel, K., García-Rivero, M., Martínez-Estrada, A., Cruz-Díaz, M. R. (2020). Enzymatic saccharification of banana peels and sequential fermentation of the reducing sugars to produce lactic acid. Bioprocess and Biosystems Engineering volume. 43, 413–427.

McCabe, W. L. Smith, J.C., Harriott, P. (2002). Operaciones Unitarias en Ingeniería Química. Mac Graw/Hill, México

Membrillo-Venegas, I., Fuentes‐Hernández, J., García‐Rivero, M., Martínez‐Trujillo, A. (2013). Characteristics of Aspergillus niger xylanases produced on rice husk and wheat bran in submerged culture and solid‐state fermentation for an applicability proposal. International Journal of Food Science and Technology. 48(9), 1798-1807.

Miller, G. L. (1959). Modified DNS method for reducing sugars. Analitical Chemistry. 31(3), 426-428.

Paramjeet, S., Manasa, P., Korrapati, N. (2018). Biofuels: Production of fungal-mediated ligninolytic enzymes and the modes of bioprocesses utilizing agro-based residues. Biocatalysis and Agricultural Biotechnology. 14, 57-71.

Ramírez-Carmona, M., Munoz-Blandón, O. (2016). Agroindustrial waste cellulose using fermented broth of white rot fungi. Revista Mexicana de Ingeniería Química, 15(1), 23-31.

Reginatto, C., Rossi, C., Miglioranza, B. G., dos Santos, M., Meneghel, L., da Silveira, M. M., Malvessi, E. (2017). Pectinase production by Aspergillus niger LB-02-SF is influenced by the culture medium composition and the addition of the enzyme inducer after biomass growth. Process Biochemistry. 58, 1-8.

Salgado, J. M., Abrunhosa, L., Venâncio, A., Domínguez, J. M., & Belo, I. (2014). Screening of winery and olive mill wastes for lignocellulolytic enzyme production from Aspergillus species by solid-state fermentation. Biomass Conversion and Biorefinery, 4(3), 201-209.

Santos, T. C. D., Abreu Filho, G., brito, A. R. D., Pires, A. J. V., Bonomo, R. C. F., Franco, M. (2016). Production and characterization of cellulolytic enzymes by Aspergillus niger and Rhizopus sp. by solid state fermentation of prickly pear. Revista Caatinga, 29(1), 222-233.

SIACON. Sistema de Información Agroalimentaria de Consulta. (2018). Accessed 01 February 2020

Silva, C. D. O. G., de Aquino Ribeiro, J. A., Souto, A. L., Abdelnur, P. V., Batista, L. R., Rodrigues, K. A., Ferreira Filho, E. X. (2018). Sugarcane bagasse hydrothermal pretreatment liquors as suitable carbon sources for hemicellulase production by Aspergillus niger. BioEnergy Research. 11(2), 316-329.

Singh, G., Dwivedi, K. (2020). Decolorization and degradation of Direct Blue-1 (Azo dye) by newly isolated fungus Aspergillus terreus GS28, from sludge of carpet industry. Environmental Technology & Innovation. 100751.

Sista Kameshwar, A. K. Qin, W. (2018). Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi. Mycology 9(2), 93-105.

Slama, R. B. Combarnous, M. (2011). Study of orange peels dryings kinetics and development of a solar dryer by forced convection. Solar energy 85(3), 570-578.

Soccol, C. R., da Costa, E. S. F., Letti, L. A. J., Karp, S. G., Woiciechowski, A. L. de Souza Vandenberghe, L. P. (2017). Recent developments and innovations in solid- state fermentation. Biotechnology Research and Innovation 1(1), 52-71.

Sohail, M., Naseeb, S., Sherwani, S. K., Sultana, S., Aftab, S., Shahzad, S., ... & Khan, S. A. (2009). Distribution of hydrolytic enzymes among native fungi: Aspergillus the pre-dominant genus of hydrolase producer. Pakistani Journal of Botany, 41(5), 2567-2582.

Stoilova, I., & Krastanov, A. (2008). Overproduction of laccase and pectinase by microbial associations in solid substrate fermentation. Applied biochemistry and biotechnology, 149(1), 45-51.

Swe, K. H., Alimon, A. R. Ramin, M. (2009). Effect of delaying sporulation by addition of ammonium sulphate on the fermentation of palm kernal cake based substrate by Aspergillus niger. American Journal of Agricultural and Biological Science. 4(4), 262-265.

Villegas-Santiago, J., Gómez-Navarro, F., Dominguez-Niño, A., García-Alvarado, M., Salgado-Cervantes, M., & Luna-Solano, G. (2020). Effect of spray-drying conditions on moisture content and particle size of coffee extract in a prototype dryer. Revista Mexicana De Ingeniería Química, 19(2), 767-781.

Walia, A., Guleria, S., Mehta, P., Chauhan, A., Parkash, J. (2017). Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech. 7(1), 11. doi:10.1007/s13205-016-0584-6

Wang, J., Cao, F., Su, E., Zhao, L. Qin, W. (2018). Improvement of animal feed additives of Ginkgo leaves through solid-state fermentation using Aspergillus niger. International Journal of Biological Sciences. 14(7), 736. doi: 10.7150/ijbs.24523

Zobriskie, D.W., Armiger, W.B., Phillips, D.H. and Albano, P.A (1980). Traders' guide to fermentation media formulation. Division of Traders protein Oil Mill Co.

How to Cite
Vargas-Solano, Z., Martínez-Trujillo, M., & Membrillo-Venegas, I. (2021). Conditioning and use of prickly pear peels for the production of lignocellulosic enzymes by Aspergillus niger sp. on solid-state cultures. Revista Mexicana De Ingeniería Química, 20(3), IA2446.
Environmental Engineering

Most read articles by the same author(s)