Design of a hybrid solar collector with a flat plate solar collector and induction heating: evaluation and modelling with principal components regression

  • E. Figueroa-Garcia
  • M.A. Segura-Castruita
  • F.M. Luna-Olea
  • O.F. Vázquez-Vuelvas
  • A.M. Chávez-Rodríguez Instituto Tecnológico de Tlajoulco
Keywords: solar dry, hybrid solar collector, flat plate collector, induction heating, principal components regression

Abstract

Food drying is one of the main food preservation processes, which are supplied with electrical energy (EE). Recently, the EE has had constant increases in its costs, prompting the integration of renewable energy sources for these processes. Therefore, the objective of this research was to design, build and model a hybrid solar collector (HSC-IH) for drying food, made up of solar energy (SE) through a solar collector and EE by means of induction heating. (IH), this work prioritizes the incorporation of an auxiliary heating system for the solar collectors, minimizing temperature variability and increasing its heat capacity, the HSC-IH has a collection surface of 1 m2, adjustable flow of 0.3 - 4 CMM and maxim of 80 ° C, the prediction model developed with PCR, to determine the outlet temperature (OT) provided by the HSC-IH with only the use of solar energy and to estimate the energy provided by the EE with the IH, the final model it has an R2 of 0.934 and can be used to understand the OT of HSC-IH.

References

Abubakar, S., Umaru, S., Kaisan, M. U., Umar, U. A., Ashok, B., and Nanthagopal, K. (2018). Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage. Renewable Energy 128, 285-298. http://doi.org /10.1016/j.renene.2018.05.049

Abuşka, M., Şevik, S., and Kayapunar, A. (2019). A comparative investigation of the effect of honeycomb core on the latent heat storage with PCM in solar air heater. Applied Thermal Engineering 148, 684-693. https://doi.org/10.1016/j.applthermaleng.2018.11.056

Al-damook, A. and Khalil, W. H. (2017). Experimental evaluation of an unglazed solar air collector for building space heating in Iraq. Renewable Energy 112, 498-509. https://doi.org/10.1016/j.renene.2017.05.051

Arunsandeep, G., Lingayat, A., Chandramohan, V. P., Raju, V. R. K., and Reddy, K. S. (2018). A numerical model for drying of spherical object in an indirect type solar dryer and estimating the drying time at different moisture level and air temperature. International Journal of Green Energy 15(3), 189-200. https://doi.org/10.1080/15435075.2018.1433181

Atalay, H. (2020). Assessment of energy and cost analysis of packed bed and phase change material thermal energy storage systems for the solar energy-assisted drying process. Solar Energy 198, 124-138. https://doi.org/10.1016/j.solener.2020.01.051

Bennamoun, L. (2011). Reviewing the experience of solar drying in Algeria with presentation of the different design aspects of solar dryers. Renewable and Sustainable Energy Reviews 15(7), 3371-3379. https://doi.org/10.1016/j.rser.2011.04.027.

Bokor, B., Akhan, H., Eryener, D., and Kajtár, L. (2019). The Potential of Solar Air Heating in the Turkish Industrial Sector. Periodica Polytechnica Mechanical Engineering 63(1), 57-66. https://doi.org/10.3311/PPme.13028

Borode, A., Ahmed, N., and Olubambi, P. (2019). A review of solar collectors using carbon-based nanofluids. Journal of Cleaner Production 241, 118311. https://doi.org/10.1016/j.jclepro.2019.118311

Bosomtwe, A., Danso, J. K., Osekre, E. A., Opit, G. P., Mbata, G., Armstrong, P., and Akowuah, J. O. (2019). Effectiveness of the solar biomass hybrid dryer for drying and disinfestation of maize. Journal of Stored Products Research 83, 66-72. https://doi.org/10.1016/j.jspr.2019.05.011

Camas-Nafate, M. P., Alvarez-Gutiérrez, P., Valenzuela-Mondaca, E., Castillo-Palomera, R., and Perez-Luna, Y. D. C. (2019). Improved agricultural products drying through a novel double collector solar device. Sustainability 11(10), 2920. https://doi.org/10.3390/su11102920

Charvát, P., Klimeš, L., Pech, O., and Hejčík, J. (2019). Solar air collector with the solar absorber plate containing a PCM–Environmental chamber experiments and computer simulations. Renewable Energy 143, 731-740. https://doi.org/10.1016/j.renene.2019.05.049

Chauhan, P., Kumar, A., and Tekasakul, P. (2015). Applications of software in solar drying systems: A review. Renewable and Sustainable Energy Reviews 51, 1326-1337. https://doi.org/10.1016/j.rser.2015.07.025

Diez, F. J., Navas-Gracia, L. M., Chico-Santamarta, L., Correa-Guimaraes, A., and Martínez-Rodríguez, A. (2019). Predicción de la irradiación solar global diaria horizontal mediante redes neuronales artificiales en la región de Castilla y León, España (No. COMPON-2019-agri-4229). https://doi.org/10.26754/c_agroing.2019.com.4229

El-Hage, H., Herez, A., Ramadan, M., Bazzi, H., and Khaled, M. (2018). An investigation on solar drying: A review with economic and environmental assessment. Energy 157, 815-829. https://doi.org/10.1016/j.energy.2018.05.197

El-Khadraoui, A., Bouadila, S., Kooli, S., Farhat, A., and Guizani, A. (2017). Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM. Journal of cleaner production 148, 37-48. https://doi.org/10.1016/j.jclepro.2017.01.149

El-Sebaii, A. A. and Shalaby, S. M. (2017). Experimental Investigation of Drying Thymus Cut Leaves in Indirect Solar Dryer With Phase Change Material. Journal of Solar Energy Engineering 139(6), 061011. https://doi.org/10.1115/1.4037816

Espinoza, J. (2016). Innovación en el deshidratado solar. Ingeniare. Revista chilena de ingeniería 24(ESPECIAL), 72-80. https://doi.org/10.4067/S0718-33052016000500010

Essalhi, H., Tadili, R., and Bargach, M. N. (2017). Conception of a Solar Air Collector for an Indirect Solar Dryer. Pear Drying Test. Energy Procedia 141, 29-33. https://doi.org/10.1016/j.egypro.2017.11.114

Fterich, M., Chouikhi, H., Bentaher, H., and Maalej, A. (2018). Experimental parametric study of a mixed-mode forced convection solar dryer equipped with a PV/T air collector. Solar Energy 171, 751-760. https://doi.org/10.1016/j.solener.2018.06.051

Fudholi, A. and Sopian, K. (2019). A review of solar air flat plate collector for drying application. Renewable and Sustainable Energy Reviews 102, 333-345. https://doi.org/10.1016/j.rser.2018.12.032

Fudholi, A., Sopian, K., Bakhtyar, B., Gabbasa, M., Othman, M. Y., and Ruslan, M. H. (2015). Review of solar drying systems with air based solar collectors in Malaysia. Renewable and Sustainable Energy Reviews 51, 1191-1204. https://doi.org/10.1016/j.rser.2015.07.026

Garcia, R. P., del-Rio-Oliveira, S., and Scalon, V. L. (2019). Thermal efficiency experimental evaluation of solar flat plate collectors when introducing convective barriers. Solar Energy 182, 278-285. https://doi.org/10.1016/j.solener.2019.02.048

García-Valladares, O., Ortiz, N. M., Pilatowsky, I., and Menchaca, A. C. (2020). Solar thermal drying plant for agricultural products. Part 1: Direct air heating system. Renewable Energy 148, 1302-1320. https://doi.org/10.1016/j.renene.2019.10.069

Gholampour, M. and Ameri, M. (2016). Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study. Applied energy 164, 837-856. https://doi.org/10.1016/j.apenergy.2015.12.042

Gómez, A. E. Á., Fandiño, J. M. M., & Sarmiento, J. F. B. (2010). Evaluación energética de un colector solar de placa plana de doble cubierta. Ingeniería y Desarrollo 27, 93-112. https://www.redalyc.org/articulo.oa?id=85215207006

Goud, M., Reddy, M. V. V., Chandramohan, V. P., and Suresh, S. (2019). A novel indirect solar dryer with inlet fans powered by solar PV panels: Drying kinetics of Capsicum Annum and Abelmoschus esculentus with dryer performance. Solar Energy 194, 871-885. https://doi.org/10.1016/j.solener.2019.11.031

Guerrero, S. (2017). Una metodología para el tratamiento de la multicolinealidad a través del escalamiento multidimensional. CIENCIA EN DESARROLLO 8(2), 9-24. https://doi.org/10.19053/01217488.v8.n2.2017.5239

Guzmán, M. F. S., Ruiz, D. D. P., Martínez, J. F. G., Sierra, M. L. R., and Torres, S. N. C. (2017). Análisis prospectivo del uso de energía solar: Caso Colombia. Investigación y Ciencia de la Universidad Autónoma de Aguascalientes 71, 85-93. https://www.redalyc.org/articulo.oa?id=67452917011

Han, W., Chau, K. T., and Lam, W. H. (2019). All-utensil domestic induction heating system. Energy Conversion and Management 195, 1035-1043. https://doi.org/10.1016/j.enconman.2019.05.093

Hao, W., Zhang, H., Liu, S., Mi, B., and Lai, Y. (2021). Mathematical modeling and performance analysis of direct expansion heat pump assisted solar drying system. Renewable Energy 165, 77-87. https://doi.org/10.1016/j.renene.2020.11.008

Hashim, N., Daniel, O., and Rahaman, E. (2014). A preliminary study: kinetic model of drying process of pumpkins (Cucurbita moschata) in a convective hot air dryer. Agriculture and Agricultural Science Procedia 2(2), 345-352. https://doi.org/10.1016/j.aaspro.2014.11.048

Karam, M. C., Petit, J., Zimmer, D., Djantou, E. B., and Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering 188, 32-49. https://doi.org/10.1016/j.jfoodeng.2016.05.001

Karki, S., Haapala, K. R., and Fronk, B. M. (2019). Technical and economic feasibility of solar flat-plate collector thermal energy systems for small and medium manufacturers. Applied Energy 254, 113649. https://doi.org/10.1016/j.apenergy.2019.113649

Kumar, C., Karim, M. A., and Joardder, M. U. (2014). Intermittent drying of food products: A critical review. Journal of Food Engineering 121, 48-57. https://doi.org/10.1016/j.jfoodeng.2013.08.014

Lingayat, A., Chandramohan, V. P., and Raju, V. R. K. (2017). Design, development, and performance of indirect type solar dryer for banana drying. Energy Procedia 109, 409-416. https://doi.org/10.1016/j.egypro.2017.03.041

López-Vidaña, E. C., Cesar-Munguía, A. L., García-Valladares, O., Pilatowsky, I., and Brito-Orosco, R. (2020). Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renewable Energy 147, 845-855. https://doi.org/10.1016/j.renene.2019.09.018

Montero, I., Miranda, M. T., Sepúlveda, F. J., Arranz, J. I., Rojas, C. V., and Nogales, S. (2015). Solar dryer application for olive oil mill wastes. Energies 8(12), 14049-14063. https://doi.org/10.3390/en81212415

Montoya-Ballesteros, L. C., González-León, A., Martínez-Nú, Y. J., Robles-Burgue, M. R., García-Alvarado, M. A., and Rodríguez-Jimenes, G. C. (2017). Impact of open sun drying and hot air drying on capsaicin, capsanthin, and ascorbic acid content in chiltepin (Capsicum annuum L. var. glabriusculum). Revista Mexicana de Ingeniería Química 16(3), 813-825. http://rmiq.org/ojs311/index.php/rmiq/article/view/941/332.

Murali, S., Amulya, P. R., Alfiya, P. V., Delfiya, D. A., and Samuel, M. P. (2020). Design and performance evaluation of solar-LPG hybrid dryer for drying of shrimps. Renewable Energy 147, 2417-2428. https://doi.org/10.1016/j.renene.2019.10.002

Natarajan, K., Thokchom, S. S., Verma, T. N., and Nashine, P. (2017). Convective solar drying of Vitis vinifera & Momordica charantia using thermal storage materials. Renewable energy 113, 1193-1200. https://doi.org/10.1016/j.renene.2017.06.096

Ortiz-Hernandez, A. A., Araiza-Esquivel, M., Delgadillo-Ruiz, L., Ortega-Sigala, J. J., Durán-Muñoz, H. A., Mendez-Garcia, V. H., and Vega-Carrillo, H. R. (2020). Physical characterization of sunflower seeds dehydrated by using electromagnetic induction and low-pressure system. Innovative Food Science & Emerging Technologies 60, 102285. https://doi.org/10.1016/j.ifset.2019.102285

Parikh, D. and Agrawal, G. D. (2012). Solar drying in hot and dry climate of Jaipur. International Journal of Renewable Energy Research (IJRER) 1(4), 224-231. https://dergipark.org.tr/tr/pub/ijrer/issue/16085/168400

Parreño, J., Lara, O., Jumbo, R., Caicedo, H., and Sarzosa, D. (2020). Diseño de un módulo de energía solar como estrategia de ahorro energético y disminución de la emisión de CO2. Agroindustria, Sociedad Y Ambiente 2(15), 4-18. https://revistas.uclave.org/index.php/asa/article/view/2849

Patil, R., and Gawande, R. (2016). A review on solar tunnel greenhouse drying system. Renewable and Sustainable Energy Reviews 56, 196-214. https://doi.org/10.1016/j.rser.2015.11.057

Pirasteh, G. (2014). A review on development of solar drying applications. Renewable and Sustainable Energy Reviews 31, 133-148. https://doi.org/10.1016/j.rser.2013.11.052

Poonia, S., Singh, A. K., and Jain, D. (2018). Design development and performance evaluation of photovoltaic/thermal (PV/T) hybrid solar dryer for drying of ber (Zizyphus mauritiana) fruit. Cogent Engineering 5(1), 1507084. https://doi.org/10.1080/23311916.2018.1507084

Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M., Iqbal, M. M., ..., and Mastrandrea, M. D. (2014). Food security and food production systems. In C. B., V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, and L. L. White (eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 485-533). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

Prada, Á., Vela, C. P., Bardález, G., and Saavedra, J. (2019). Efectividad de un Proceso de Secado de Café usando Secadores Solares con Sistema de Flujo de Aire Continúo Impulsado por Energía Fotovoltaica, en la Región San Martín, Perú. Información tecnológica 30(6), 85-92. http://dx.doi.org/10.4067/S0718-07642019000600085

Rani, P., and Tripathy, P. P. (2021). Drying characteristics, energetic and exergetic investigation during mixed-mode solar drying of pineapple slices at varied air mass flow rates. Renewable Energy 167, 508-519. https://doi.org/10.1016/j.renene.2020.11.107

Rizal, T. A. and Muhammad, Z. (2018). Fabrication and testing of hybrid solar-biomass dryer for drying fish. Case studies in thermal engineering 12, 489-496. https://doi.org/10.1016/j.csite.2018.06.008

Sałat, R., Awtoniuk, M., and Korpysz, K. (2017). Black-box identification of a pilot-scale dryer model: A Support Vector Regression and an Imperialist Competitive Algorithm approach. IFAC-PapersOnLine 50(1), 1559-1564. https://doi.org/10.1016/j.ifacol.2017.08.309

Salem, M. R., Ali, R. K., and Elshazly, K. M. (2017). Experimental investigation of the performance of a hybrid photovoltaic/thermal solar system using aluminium cooling plate with straight and helical channels. Solar Energy 157, 147-156. https://doi.org/10.1016/j.solener.2017.08.019

Samimi-Akhijahani, H. and Arabhosseini, A. (2018). Accelerating drying process of tomato slices in a PV-assisted solar dryer using a sun tracking system. Renewable Energy 123, 428-438. https://doi.org/10.1016/j.renene.2018.02.056

Schnitzer, H., Brunner, C., and Gwehenberger, G. (2007). Minimizing greenhouse gas emissions through the application of solar thermal energy in industrial processes. Journal of Cleaner Production 15(13-14), 1271-1286. https://doi.org/10.1016/j.jclepro.2006.07.023

Shalaby, S. M., Bek, M. A., and El-Sebaii, A. A. (2014). Solar dryers with PCM as energy storage medium: A review. Renewable and Sustainable Energy Reviews 33, 110-116. https://doi.org/10.1016/j.rser.2014.01.073

Simonetti, M., Restagno, F., Sani, E., and Noussan, M. (2020). Numerical investigation of direct absorption solar collectors (DASC), based on carbon-nanohorn nanofluids, for low temperature applications. Solar Energy 195, 166-175. https://doi.org/10.1016/j.solener.2019.11.044

Solanki, A. and Pal, Y. (2020). Applications of a flat plate collector in dairy industries: a review. International Journal of Ambient Energy 1-25, https://doi.org/10.1080/01430750.2020.1721326.

Téllez, M. C., Sierra, J. C. O., Zárraga, F. L., and Álvarez, D. C. M. (2019). Nut drying of India cultivated in Campeche, México through direct solar technologies and under controlled conditions. Revista Bistua Facultad de Ciencias Básicas, 17(3), 60-69.

Tlatelpa-Becerro, A., Rico-Martínez, R., Urquiza-Beltrán, G., and Calderón-Ramírez, M. (2020). Obtaining of Crataegus mexicana leaflets using an indirect solar dryer. Revista Mexicana De Ingeniería Química 19(2), 669-676. https://doi.org/10.24275/rmiq/Alim896.

Torres-Gallo, R., Miranda-Lugo, P. J., and Martínez-Padilla, K. A. (2017). Design and construction of a hybrid system of heating air by combustion of biomass and solar radiation, using phase change material (PCM) as a source of thermal storage, for cassava drying. TecnoLógicas 20(39), 71-83. https://doi.org/10.22430/22565337.693.

Valdés-Barrón, M. G., Bonifaz-Alfonzo, R., González-Cabrera, A. E., Estévez-Pérez, H. R., Rodríguez-Rasilla, I., Retama-Hernández, A., and Riveros-Rosas, D. (2020). Energia solar disponible en la ciudad de México. In CIES2020-XVII Congresso Ibérico e XIII Congresso Ibero-americano de Energia Solar (pp. 905-910). LNEG-Laboratório Nacional de Energia e Geologia.

Voigt, A. L., da Cunha, T. V., and Bohórquez, C. E. N. (2020). Conception, implementation and evaluation of induction wire heating system applied to hot wire gtaw (ihw-gtaw). Journal of Materials Processing Technology 281, 116615. https://doi.org/10.1016/j.jmatprotec.2020.116615

Wang, W., and Lu, Y. (2018, March). Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model. In IOP conference series: materials science and engineering. 324(1), 012049). IOP Publishing.

Wuttichaikitcharoen, P., and Babel, M. S. (2014). Principal component and multiple regression analyses for the estimation of suspended sediment yield in ungauged basins of northern Thailand. Water 6(8), 2412-2435. https://doi.org/10.3390/w6082412

Xue, Y., Wang, C., Hu, Z., Zhou, Y., Liu, G., Hou, H., and Li, J. (2018). Thermal treatment on sewage sludge by electromagnetic induction heating: Methodology and drying characterization. Waste management 78, 917-928. https://doi.org/10.1016/j.wasman.2018.07.009

Yassen, T. A. and Al-Kayiem, H. H. (2016). Solar-biomass hybrid dryer enhanced by the Co-Gen technique. Drying technology 34(3), 287-295. https://doi.org/10.1080/07373937.2015.1051662

Zhang, M., Chen, H., Mujumdar, A. S., Tang, J., Miao, S., and Wang, Y. (2017). Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Critical reviews in food science and nutrition 57(6), 1239-1255. https://doi.org/10.1080/10408398.2014.979280.

Zhou, C. Y., Wang, C., Cai, J. H., Bai, Y., Yu, X. B., Li, C. B., ..., and Cao, J. X. (2019). Evaluating the effect of protein modifications and water distribution on bitterness and adhesiveness of Jinhua ham. Food chemistry 293, 103-111. https://doi.org/10.1016/j.foodchem.2019.04.095

Published
2021-07-08
How to Cite
Figueroa-Garcia, E., Segura-Castruita, M., Luna-Olea, F., Vázquez-Vuelvas, O., & Chávez-Rodríguez, A. (2021). Design of a hybrid solar collector with a flat plate solar collector and induction heating: evaluation and modelling with principal components regression. Revista Mexicana De Ingeniería Química, 20(3), Alim2452. https://doi.org/10.24275/rmiq/Alim2452
Section
Food Engineering

Most read articles by the same author(s)