Comparison of two leachate treatment systems by use of bioreactors packed with stabilized material of different age

  • T.J. Sánchez-Sánchez
  • H.A. Nájera-Aguilar
  • S. Enciso-Sáenz
  • J.J. Villalobos-Maldonado
  • F. Lango-Reynoso
  • V.M. Ruiz-Valdiviezo
  • J.H. Castañón-González
Keywords: Stabilized Material-Young, Stabilized Material-Old, Landfill, Mature Leachate, Hydraulic Load

Abstract

Leachates that are generated in the sanitary landfills constitute a contamination problem for which a treatment is necessary. A viable alternative is an application of bioreactors packed with stabilized materials. In the present work, materials with two different ages were tested, which came from different closed sites. The stabilized materials (SM) were physically characterized with parameters such as humidity, volatile solids, pH, electrical conductivity and density. The bioreactor system was operated for a period of 30 weeks in two stages, by use of a complete 22 factorial design. In stage I, the study factors were the hydraulic head (25 and 40 L/m3d) and the age of the SM (7 and 11 years), whereas in stage II the factors evaluated were age of the SM and type of feeding (continuous and semi-continuous). The highest average efficiency in pollutant removal was 70% for COD and 81% for BOD5 and color, which corresponded to a combination of factors, namely young and stabilized materials, continuous feeding and a hydraulic load of 25 L/m3d. The final effluent had average values ​​of 905 mg/L, 130 mg/L, 2388 Pt-Co and 0.09, for COD, BOD5, color and BI, respectively, for which a final purification stage was still required.

References

Aldana-Espitia, N.C., Botello-Álvarez, J.E., Rivas-García, P., Cerino-Córdova, F.J., Bravo-Sánchez, M.G., Abel-Seabra, J.E., and Estrada-Baltazar, A. (2017). Environmental impact mitigation during the solid waste management in an industrialized city in Mexico: an approach of life cycle assessment. Revista Mexicana de Ingeniería Química, 16(2), 563-580. http://www.rmiq.org/ojs311/index.php/rmiq/article/view/837
APHA (2012). Standard methods for the examination of water and wastewater, 22a ed. American Public Health Association/American Water Works Associa-tion/Water Environment Federation, Washington, DC, USA.
Artiola‐Fortuny, J., and Fuller, W.H. (1982). Humic substances in landfill leachates: I. Humic acid extraction and identification. Journal of Environmental Quality, 11(4), 663-669. DOI: 10.2134/jeq1982.00472425001100040021x
Bashir, M. J., Isa, M. H., Kutty, S.R.M., Awang, Z.B., Aziz, H.A., Mohajeri, S. and Farooqi, I.H. (2009). Landfill leachate treatment by electrochemical oxidation. Waste Management, 29(9), 2534-2541. DOI: 10.1016 / j.wasman.2009.05.004
Bautista-Ramírez, J.A., Gutiérrez-Hernández, R.F., Nájera-Aguilar, H.A., Martínez-Salinas, R.I, Vera-Toledo, P., Araiza-Aguilar, J.A., Méndez-Novelo, R.I. and Rojas-Valencia, M.N. (2018). Biorreactor empacado con materiales estabilizados (BEME), como pretratamiento para lixiviados de rellenos sanitarios. Revista Mexicana de Ingeniería Química. 17 (2), 561-571. http://www.rmiq.org/ojs311/index.php/rmiq/article/view/60
Brennan, R.B., Clifford, E., Devroedt, C., Morrison, L. and Healy, M. G. (2017). Treatment of landfill leachate in municipal wastewater treatment plants and impacts on effluent ammonium concentrations. Journal of Environmental Management, 188, 64-72. DOI: 10.1016/j.jenvman.2016.11.055
Chen, W., Wang, F., Gu, Z. and Li, Q. (2020). Recovery of efficient treatment performance in a semi-aerobic aged refuse biofilter when treating landfill leachate: Washing action using domestic sewage. Chemosphere, 245, 125618. DOI: 10.1016/j.chemosphere.2019.125618
Chen, W., Zhang, A., Jiang, G. and Li, Q. (2019). Transformation and degradation mechanism of landfill leachates in a combined process of SAARB and ozonation. Waste management, 85, 283-294. DOI: 10.1016/j.wasman.2018.12.038
Chen, Y. X., Wu, S. W., Wu, W. X., Sun, H. and Ding, Y. (2009). Denitrification capacity of bioreactors filled with refuse at different landfill ages. Journal of hazardous materials, 172(1), 159-165. doi:10.1016/j.jhazmat.2009.06.150
Contrera, R. C., Culi, M. J. L., Morita, D. M., Rodrigues, J. A. D., Zaiat, M. and Schalch, V. (2018). Biomass growth and its mobility in an AnSBBR treating landfill leachate. Waste Management, 82, 37-50. DOI: 10.1016/j.wasman.2018.10.006
Edwards, G. A. and Amirtharajah, A. (1985). Removing color caused by humic acids. Journal‐American Water Works Association, 77(3), 50-57. DOI: 10.1002/j.1551-8833.1985.tb05508.x
Erabee, I. K. and Ethaib, S. (2018). Treatment of contaminated Landfill Leachate using Aged Refuse Biofilter Medium. Oriental Journal of Chemistry, 34(3), 1441-1450. DOI: 10.13005/ojc/340334
Erses, A. S., Onay, T. T. and Yenigun, O. (2008). Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresource technology, 99(13), 5418-5426. DOI: 10.1016/j.biortech.2007.11.008
Feng, F., Liu, Z. G., Song, Y. X., Jiang, C. K., Chai, X. L., Tang, C. J., and Chai, L. Y. (2019). The application of aged refuse in nitrification biofilter: Process performance and characterization. Science of the Total Environment, 657, 1227-1236. https://doi.org/10.1016/j.scitotenv.2018.12.020
Foul A.A., Aziz H.A., Isa M.H. and Hung Y. T. (2009) Primary treatment of anaerobic landfill leachate using activated carbon and limestone: batch and column studies. Int J Environ Waste Manag 4:282–298. DOI: 10.1504/IJEWM.2009.027397
Han, D., Zhao, Y., Xue, B., and Chai, X. (2010). Effect of bio-column composed of aged refuse on methane abatement–A novel configuration of biological oxidation in refuse landfill. Journal of Environmental Sciences, 22(5), 769-776. DOI: 10.1016 / s1001-0742 (09) 60175-3
Han, Z. Y., Liu, D., Li, Q. B., Li, G. Z., Yin, Z. Y., Chen, X., & Chen, J. N. (2011). A novel technique of semi-aerobic aged refuse biofilter for leachate treatment. Waste management, 31(8), 1827-1832. doi.org/10.1016/j.wasman.2011.03.016
Han, Z. Y., Liu, D., and Li, Q. B. (2013). A removal mechanism for organics and nitrogen in treating leachate using a semi-aerobic aged refuse biofilter. Journal of environmental management, 114, 336-342. http://dx.doi.org/10.1016/j.jenvman.2012.10.026
Hassan, M., and Xie, B. (2014). Use of aged refuse-based bioreactor/biofilter for landfill leachate treatment. Applied microbiology and biotechnology, 98(15), 6543-6553. DOI: 10.1007/s00253-014-5813-5
He, Y., Li, D., Zhao, Y., Huang, M., and Zhou, G. (2017). Assessment and analysis of aged refuse as ammonium-removal media for the treatment of landfill leachate. Waste Management & Research, 35(11), 1168-1174. DOI: 10.1177/0734242X17730136
INEGI (2011). Residuos Sólidos Urbanos. Censo Nacional de Gobiernos Municipales y Delegacionales 2011. Modulo ambiental de residuos sólidos urbanos. Tabulados básicos.
León-García, G.J., Razo-Flores, E. and Cervantes, F. J. (2007). Propiedades catalíticas del humus y su potencial aplicación en la degradación de contaminantes prioritarios. Revista Latinoamericana de Recursos Naturales, 3(2), 118-128
Li, H., Zhao, Y., Shi, L. and Gu, Y. (2009). Three-stage aged refuse biofilter for the treatment of landfill leachate. Journal of Environmental Sciences (China), 21(1), 70-75. DOI: 10.1016/S1001-0742(09)60013-9
Li, W., Sun, Y., Bian, R., Wang, H. and Zhang, D. (2017). N2O emissions from an intermittently aerated semi-aerobic aged refuse bioreactor: combined effect of COD and NH4+-N in influent leachate. Waste Management, 69, 242-249. DOI: 10.1016/j.wasman.2017.08.022
Li. H., Gu, Y., Zhao, Y. and Wen, Z. (2010). Leachate treatment using a demonstration aged refuse biofilter. Journal of Environmental Sciences, 22(7), 1116-1122. DOI: 10.1016/S1001-0742(09)60226-6.
Lozano-Caballero, G., Bautista-Ramírez, J., Díaz-Garcia, M., Gutiérrez-Hernández, R., Martínez-Salinas, R. and Nájera Aguilar, H. (2016). Remoción de carga orgánica en lixiviados por medio de un biofiltro empacado con residuos estabilizados. Innovación más desarrollo, 12, 9-22. DOI: 10.31644/IMASD.12.2016.a01
Méndez, N. R., López, A.N., Peraza, V.C., Borges, E.C. and Riancho, M.S. (2008). Remoción de materia orgánica y metales pesados de lixiviados por flotación con aire disuelto. Ingeniería, 12(1), 13-19.
Nájera-Aguilar, H.A., Gutiérrez-Hernández, R.F., Bautista-Ramírez, J., Martínez-Salinas, R. I., Escobar-Castillejos, D., Borraz-Garzón, R. and Giácoman-Vallejos, G. (2019). Treatment of Low Biodegradability Leachates in a Serial System of Aged Refuse-Filled Bioreactors. Sustainability, 11(11), 3193. DOI: 10.3390/su11113193
NMX-AA-051-SCFI-2016. Análisis de agua. Medición de metales por absorción atómica en aguas naturales, potables, residuales y residuales tratadas. Método de prueba
NOM-001- SEMARNAT-1996. Norma oficial mexicana nom-001-semarnat- 1996, que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales.
Olivero-Verbel, J., Padilla-Bottet, C. and De la Rosa, O. (2008). Relaciones entre los parámetros fisicoquímicos y la toxicidad de los lixiviados de un vertedero municipal de residuos sólidos. Ecotoxicología y seguridad ambiental. 70 (2), 294-299.
Pellera, F.M., Pasparakis, E. and Gidarakos, E. (2016). Consecutive anaerobic-aerobic treatment of the organic fraction of municipal solid waste and lignocellulosic materials in laboratory-scale landfill-bioreactors. Waste management, 56, 181-189. https://doi.org/10.1016/j.wasman.2016.07.044
Peng, W., Pivato, A., Garbo, F. and Wang, T. (2019). Stabilization of solid digestate and nitrogen removal from mature leachate in landfill simulation bioreactors packed with aged refuse. Journal of environmental management, 232, 957-963. DOI: 10.1016/j.jenvman.2018.12.007
Renou, S., Givaudan, J.G., Poulain, S., Dirassouyan, F. and Moulin, P. (2008). Landfill leachate treatment: review and opportunity. Journal of hazardous materials, 150(3), 468-493. DOI: 10.1016/j.jhazmat.2007.09.077
Saldaña D. C. E. and Nájera G. O. (2019). Identificación de sitios con potencial para la disposición final de residuos sólidos urbanos en el municipio de Tepic, Nayarit, México. Revista Internacional de Contaminación Ambiental, 35, 69-77. DOI: 10.20937/RICA.2019.35.esp02.07
Sánchez-Corzo, L.D., Escobar-Megchun, S., Nájera-Aguilar, H.A. and Gutiérrez-Hernández, R. (2012). Caracterización de los lixiviados en las dos lagunas de evaporación del relleno sanitario de la ciudad de Tuxtla Gutiérrez, Chiapas, México. Lacandonia, 6(1), 135- 142.
San-Pedro, L., Méndez-Novelo, R., Hernández-Núñez, E., Nájera-Aguilar, H.A., Gutiérrez-Hernández, R.F. (2021). Fenton-adsorption process for leachates from two landfills (karstic-clays). Revista Mexicana de Ingeniería Química. 20 (2), 853-866. DOI: 10.24275/ rmiq/ IA2195
Schnitzer, M., Sowden, F.J. and Ivarson, K.C. (1978). Humic substances: chemistry and reactions. Soil Biol. Biochem., 6: 401-407. DOI: 10.1016/S0166-2481(08)70016-3
Show, P. L., Pal, P., Leong, H. Y., Juan, J. C. and Ling, T. C. (2019). A review on the advanced leachate treatment technologies and their performance comparison: an opportunity to keep the environment safe. Environmental monitoring and assessment, 191(4), 227. DOI: 10.1007/s10661-019-7380-9
Torres, P., Barba-Ho, L.E., Ojeda, C., Martínez, J. and Castaño, Y. (2014). Influencia de la edad de lixiviados sobre su composición físico-química y su potencial de toxicidad. Revista U.D.C.A Actualidad & Divulgación Científica 17 (1): 245-255.
Wang, F., Smith, D. and El-Din M. (2003). Application of advanced oxidation methods for landfill leachate treatment A review. J. Environ. Eng. Sci., 2(6), 413-427. DOI: 10.1139/s03-058
Xie B., Xiong S., Liang S., Hu C., Zhang X. and Lu J. (2012). Performance and bacterial compositions of aged refuse reactors treating mature landfill leachate. Biosource Technology. 103. 71-77. DOI: 10.1016/j.biortech.2011.09.114
Yao P. (2017). Perspectives on technology for landfill leachate treatment. Arabian Journal of Chemistry, 10, S2567- S2574. DOI: 10.1016/j.arabjc.2013.09.031
Zamri, M.F.M.A., Kamaruddin, M.A., Yusoff, M.S., Aziz, H.A. and Foo, K.Y. (2017). Semi-aerobic stabilized landfill leachate treatment by ion exchange resin: isotherm and kinetic study. Applied Water Science, 7(2), 581-590. DOI 10.1007/s13201-015-0266-2
Zhang, A., Gu, Z., Chen, W. and Li, Q. (2018). Degradation of leachate from a semi-anaerobic aged refuse biofilter by the ZVI/H 2 O 2 process coupled with microwave irradiation: optimization, organics transformation, and reaction mechanisms. Environmental Science: Water Research & Technology, 4(10), 1695-1709. DOI: 10.1039/C8EW00469B
Zhao, Y., Li, H., Wu, J. and Gu, G. (2002). Treatment of leachate by aged-refuse-based biofilter. Journal of Environment Engineering, 128, 662-668.
Ziyang, L., Wang, L., Zhu, N. and Youcai, Z. (2015). Martial recycling from renewable landfill and associated risks: A review. Chemosphere, 131, 91-103. DOI: 10.1016/j.chemosphere.2015.02.036
Published
2021-10-04
How to Cite
Sánchez-Sánchez, T., Nájera-Aguilar, H., Enciso-Sáenz, S., Villalobos-Maldonado, J., Lango-Reynoso, F., Ruiz-Valdiviezo, V., & Castañón-González, J. (2021). Comparison of two leachate treatment systems by use of bioreactors packed with stabilized material of different age. Revista Mexicana De Ingeniería Química, 20(3), IA2472. https://doi.org/10.24275/rmiq/IA2472
Section
Environmental Engineering

Most read articles by the same author(s)