Modeling glucose isomerization in a packed bed reactor using a new approach to the Briggs-Haldane mechanism

  • M. Carrazco-Escalante
  • O. Hernández-Calderón
  • R. Iribe-Salazar
  • Y. Vázquez-López
  • E. Ríos-Iribe
  • C. Alarid-García
  • J. Caro-Corrales Universidad Autónoma de Sinaloa https://orcid.org/0000-0003-1496-0507
Keywords: immobilized glucose‐isomerase, packed bead reactor, axial dispersion coefficient, convective mass transfer coefficient.

Abstract

Nowadays, immobilized enzymes are utilized in several food industry applications. Some researches use apparent kinetic parameters in immobilized enzyme reactor systems, which are limited to such case studies. To enhance productivity in a packed bed reactor (PBR), a clear description of all the mechanisms (kinetic, intra-particle diffusive mass transport, fluid-particle convective mass transport, and axial dispersion) affecting the process should be established. The objective of this study was to model the isomerization of glucose in a PBR with calcium alginate beads (CAB), using an approach where the kinetic and diffusional mechanisms are described independently. The convective mass transfer (kL) and axial dispersion (Dz) coefficients were calculated from correlations. Validation was performed comparing predictions against experimental data (R2 = 0.907) of glucose conversion at the reactor’s outlet once steady state was reached. Under the study conditions, in contrast to the effect exerted by diffusive mass transport on fructose specific productivity, the effect of axial dispersion and convective mass transport is negligible. Analyzing different operation parameters via simulation, the particle size had the highest impact on the glucose bioconversion. By reducing the CAB size, the surface area is increased and thus the conversion. It is recommended to test new immobilizing agents or decreasing the CAB size, monitoring that immobilizing support preserves its stability and functionality.

References

Aguilar, R., Soto, G., Martínez, S. and Maya-Yescas, R. (2005). Substrate regulation in fixed bed bioreactors via feedback control. Revista Mexicana de Ingeniería Química 3, 1-11.

Asif, M. (2015). Retrofitting of fixed-bed heterogeneous reactors for glucose isomerization. Chemical Engineering Communications 202, 1547-1556. https://doi.org/10.1080/00986445.2014.959587

Asif, M. and Abasaeed, A. E. (1998). Modeling of glucose isomerization in a fluidized bed immobilized enzyme bioreactor. Bioresource Technology 64, 229-235. https://doi.org/10.1016/S0960-8524(97)00119-3

Bird, R. B., Stewart, W. E. and Lightfoot, E. N. (2006). Transport Phenomena rev 2nd Ed.

Boudrant, J., Woodley J. M. and Fernandez-Lafuente R. (2020). Parameters necessary to define an immobilized enzyme preparation. Process Biochemistry 90, 66-80. https://doi.org/10.1016/j.procbio.2019.11.026

Camacho‐Rubio, F., Jurado‐Alameda, E., González‐Tello, P. and Luzón‐González, G. (1995). Kinetic study of fructose‐glucose isomerization in a recirculation reactor. The Canadian Journal of Chemical Engineering 73, 935-940. https://doi.org/10.1002/cjce.5450730618

Cano-Sampedro, E., Pérez-Pérez, V., Osorio-Díaz, P., Camacho-Díaz, B. H., Tapia-Maruri D., Mora-Escobedo, R. and Alamilla-Beltrán, L. (2021). Germinated soybean protein hydrolysate: ionic gelation encapsulation and release under colonic conditions. Revista Mexicana de Ingeniería Química 20, 725-737. https://doi.org/10.24275/rmiq/Alim2319

Carrazco‐Escalante, M., Caro‐Corrales, J., Iribe‐Salazar, R., Ríos‐Iribe, E., Vázquez‐López, Y., Gutiérrez‐Dorado, R. and Hernández‐Calderón, O. (2020). A new approach for describing and solving the reversible Briggs‐Haldane mechanism using immobilized enzyme. The Canadian Journal of Chemical Engineering 98, 316-329. https://doi.org/10.1002/cjce.23528

Che-Galicia, G., Martínez-Vera, C., Ruiz-Martínez, R. S. and Castillo-Araiza, C. O. (2014). Modelling of a fixed bed adsorber based on an isotherm model or an apparent kinetic model. Revista Mexicana de Ingeniería Química 13, 539-553.

Chopda, V. R., Nagula, K. N., Bhand, D. V. and Pandit, A. B. (2014). Studying the effect of nature of glass surface on immobilization of glucose isomerase. Biocatalysis and Agricultural Biotechnology, 3, 86-89. https://doi.org/10.1016/j.bcab.2014.01.001

Chung, S. F. and Wen, C. Y. (1968). Longitudinal dispersion of liquid flowing through fixed and fluidized beds. AIChE Journal 14, 857-866. https://doi.org/10.1002/aic.690140608

Dal Magro, L., Kornecki J. F., Klein M. P., Rodrigues R. C. and Fernandez-Lafuente R. (2020). Pectin lyase immobilization using the glutaraldehyde chemistry increases the enzyme operation range. Enzyme and Microbial Technology 132, 109397. https://doi.org/10.1016/j.enzmictec.2019.109397

Dehkordi, A. M., Safari, I. and Karima, M. M. (2008). Experimental and modeling study of catalytic reaction of glucose isomerization: kinetics and packed‐bed dynamic modeling. AIChE Journal 54, 1333-1343. https://doi.org/10.1002/aic.11460

Dehkordi, A. M., Tehrany, M. S. and Safari, I. (2009). Kinetics of glucose isomerization to fructose by immobilized glucose isomerase (Sweetzyme IT). Industrial & Engineering Chemistry Research 48, 3271-3278. https://doi.org/10.1021/ie800400b

Dormand, J. R., and Prince, P. J. (1980). A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics, 6(1), 19-26.

Figueroa-García, E., Farias-Cervantes V., Segura-Castruita, M., Andrade-Gonzalez, I., Montero-Cortés, M. and Chávez-Rodríguez, A. (2021). Using artificial neural networks in prediction of the drying process of foods that are rich in sugars. Revista Mexicana de Ingeniería Química 20, 161-171. https://doi.org/10.24275/rmiq/Sim1403

Gaily, M. H., Sulieman, A. K. and Abasaeed, A. E. (2013). Kinetics of a three-step isomerization of glucose to fructose using immobilized enzyme. International Journal of Chemical Engineering and Applications 4, 31. https://doi.org/10.7763/IJCEA.2013.V4.255

Homaei, A. A., Sariri, R., Vianello, F. and Stevanato, R. (2013). Enzyme immobilization: an update. Journal of Chemical Biology 6, 185-205. https://doi.org/10.1007/s12154-013-0102-9

Junqueira, L. L., De Brito, A. R., Franco, M. and De Assis, S. A. (2019). Partial characterization and immobilization of Carboxymethylcellulase from Aspergillus niger produced by solid-state fermentation. Revista Mexicana de Ingeniería Química 18, 241-250. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/Junqueira

Krishnamoorthi, S., Banerjee, A. and Roychoudhury, A. (2015). Immobilized enzyme technology: potentiality and prospects. Journal of Enzymology and Metabolism, 1(1), 010-104.

Nawaz, A., Sameer, M., Akram, F., Tahir, S., Arshad, Y., Haq, I. and Mukhtar, H. (2021). Kinetic and thermodynamic insight of a polygalacturonase: A biocatalyst for industrial fruit juice clarification. Revista Mexicana de Ingeniería Química 20, 1029-1045. https://doi.org/10.24275/rmiq/Bio2355

Neifar, S., Cervantes, F. V., Bouanane-Darenfed, A., BenHlima, H., Ballesteros, A. O., Plou, F. J. and Bejar, S. (2020). Immobilization of the glucose isomerase from Caldicoprobacter algeriensis on sepabeads EC-HA and its efficient application in continuous high fructose syrup production using packed bed reactor. Food Chemistry 309, 125710. https://doi.org/10.1016/j.foodchem.2019.125710

Palazzi, E. and Converti, A. (2001). Evaluation of diffusional resistances in the process of glucose isomerization to fructose by immobilized glucose isomerase. Enzyme and Microbial Technology, 28(2-3), 246-252. https://doi.org/10.1016/S0141-0229(00)00323-9

Peschke, T., Bitterwolf, P., Rabe, K. S. and Niemeyer, C. M. (2019). Self-immobilizing oxidoreductases for flow biocatalysis in miniaturized packed-bed reactors. Chemical Engineering & Technology 42, 2009-2017. https://doi.org/10.1002/ceat.201900073

PonRani, V. M. and Rajendran, L. (2012). Mathematical modelling of steady-state concentration in immobilized glucose isomerase of packed-bed reactors. Journal of Mathematical Chemistry 50, 1333-1346. https://doi.org/10.1007/s10910-011-9973-6

Rahman, N. Abd., Hussain, M. A. and Md.Jahim, J. (2013). Comparison study of experimental and simulation in the glucose isomerisation process in a fixed-bed reactor. Advanced Materials Research 781-784, 961-964. https://doi.org/10.4028/www.scientific.net/amr.781-784.961

Ribeiro, A. M., Neto, P. and Pinho, C. (2010). Mean porosity and pressure drop measurements in packed beds of monosized spheres: side wall effects. International Review of Chemical Engineering 2, 40-46.

Richit, L. A., Wolf, T. C., Ribeiro, M. C., Grzybowski, J. M., da Luz, C. and Dervanoski, A. (2020). Finite difference approximation in a non-isothermal and non-adiabatic fixed bed adsorption model: an application to n-hexane. Brazilian Journal of Chemical Engineering 37, 249-262. https://doi.org/10.1007/s43153-020-00015-z

Santana, J. L., Oliveira, J. M., Nascimento, J. S., Mattedi, S., Krause, L. C., Freitas, L. S., Cavalcanti, E. B., Pereira, M. M., Lima, A. S. and Soares, C. M. F. (2020). Continuous flow reactor based with an immobilized biocatalyst for the continuous enzymatic transesterification of crude coconut oil. Biotechnology and Applied Biochemistry 67, 404-413. https://doi.org/10.1002/bab.1885

Selvi, M. S. M. and Hariharan, G. (2016). Wavelet-based analytical algorithm for solving steady-state concentration in immobilized glucose isomerase of packed-bed reactor model. The Journal of Membrane Biology 249, 559-568. https://doi.org/10.1007/s00232-016-9905-2

Singh, T. A., Jajoo, A. and Bhasin, S. (2020). Optimization of various encapsulation systems for efficient immobilization of actinobacterial glucose isomerase. Biocatalysis and Agricultural Biotechnology 29, 101766. https://doi.org/10.1016/j.bcab.2020.101766

Tumturk, H., Demirel, G., Altinok, H., Aksoy, S. and Hasirci, N. (2008). Immobilization of glucose isomerase in surface‐modified alginate gel beads. Journal of Food Biochemistry 32, 234-246. https://doi.org/10.1111/j.1745-4514.2008.00171.x

Verduzco-Navarro, I., Jasso-Gastinel, C., Rios-Donato, N. and Mendizábal, E. (2020). Red dye 40 removal by fixed-bed columns packed with alginate-chitosan sulfate hydrogels. Revista Mexicana de Ingeniería Química 19, 1401-1411. https://doi.org/10.24275/rmiq/IA1123

Wilson, E. J. and Geankoplis, C. J. (1966). Liquid mass transfer at very low Reynolds numbers in packed beds. Industrial & Engineering Chemistry Fundamentals 5, 9-14.

Won, K., Kim, S., Kim, K. J., Park, H. W. and Moon, S. J. (2005). Optimization of lipase entrapment in ca-alginate gel beads. Process Biochemistry 40, 2149-2154. https://doi.org/10.1016/j.procbio.2004.08.014

Yu, H., Guo, Y., Wu, D., Zhan, W. and Lu, G. (2011). Immobilization of glucose isomerase onto GAMM support for isomerization of glucose to fructose. Journal of Molecular Catalysis B: Enzymatic, 72, 73-76. https://doi.org/10.1016/j.molcatb.2011.05.006

Zhang, Z., Zhang, S., Lee, W. J., Lai, O. M., Tan, C. P. and Wang, Y. (2020). Production of Structured triacylglycerol via enzymatic interesterification of medium‐chain triacylglycerol and soybean oil using a pilot‐scale solvent‐free packed bed reactor. Journal of the American Oil Chemists’ Society. https://doi.org/10.1002/aocs.12319

Zhao, H., Cui, Q., Shah, V., Xu, J. and Wang, T. (2016). Enhancement of glucose isomerase activity by immobilizing on silica/chitosan hybrid microspheres. Journal of Molecular Catalysis B: Enzymatic 126, 18-23. https://doi.org/10.1016/j.molcatb.2016.01.013

Published
2021-08-16
How to Cite
Carrazco-Escalante, M., Hernández-Calderón, O., Iribe-Salazar, R., Vázquez-López, Y., Ríos-Iribe, E., Alarid-García, C., & Caro-Corrales, J. (2021). Modeling glucose isomerization in a packed bed reactor using a new approach to the Briggs-Haldane mechanism. Revista Mexicana De Ingeniería Química, 20(3), pdf. https://doi.org/10.24275/rmiq/Cat2474
Section
Catalysis, kinetics and reactors