Mathematical modeling for monitoring and controlling aerobic degradation conditions of the organic fraction of urban solid waste

  • R. Estrada-Matínez Universidad Tecnológica de Tecámac http://orcid.org/0000-0002-5287-6982
  • G. Carrillo-Sancen Universidad Tecnológica de Tecámac
  • G.I. Cerón-Montes
  • A. Garrido-Hernandez Universidad Tecnológica de Tecámac
  • F.J. Martínez-Valdez Universidad Tecnológica de Tecámac
Keywords: Organic fraction of municipal solid waste, aerobic degradation, compost, solid-state fermentation, phytotoxicity.

Abstract

Compost has applications in agriculture and environmental restoration. Therefore, it is important to evaluate control parameters that help accelerate and improve the aerobic degradation and stabilization processes of organic waste. A mixture of pruning waste, organic fraction of municipal solid waste, paper, and sawdust was subjected to an aerobic degradation process using mature and stabilized compost from the Bordo Poniente composting plant in Mexico City at different aeration rates (0.064, 0.125, 0.201 and 0.392 L air min-1 kg-1 dry matter) in laboratory-scale bioreactors for 140 h. On-line monitoring of CO2 production and O2 consumption and their setting to mathematical models allowed to select the conditions to obtain a stable compost, as well as to analyze the concentration of trehalose, citric acid, glucose, xylose, erythritol, acetic acid, fructose, and the production of oxalic acid during the degradation process. Germination rates higher than 80% were obtained in the growth of Lactuca sativa seeds in organic waste extracts after aerobic degradation. A vkgm of 0.392 L air kg-1 min-1 DM is suggested as a strategy to obtain a compost free of phytotoxic compounds for the application of compost in agriculture or environmental restoration and a null maintenance coefficient.

References

Arslan, E. I., Ünlü, A., & Topal, M. (2011). Determination of the effect of aeration rate on composting of vegetable–fruit wastes. CLEAN–Soil, Air, Water, 39(11), 1014-1021. https://doi.org/10.1002/clen.201000537

Bernal, M.P., Alburquerque, J.A. and Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology 100, 5444–5453. https://doi.org/10.1016/j.biortech.2008.11.027

Carrizalez, V., Rodríguez, H. and Sardiña, I. (1981). Determination of the specific growth of molds on semi-solid cultures. Biotechnology and Bioengineering 23, 321–333. https://doi.org/10.1002/bit.260230207

Cobos, J. V., Grimón, R. R., Farías, C. V., Grijalva-EndaraE, A., & Mercader-Camejo, O. A. (2020). Biodegradation of plantain rachis using phytopathogenic fungi for composting. Revista Mexicana de Ingeniería Química, 19(2), 533-541. https://doi.org/10.24275/rmiq/Bio707

Cooperband, L.R., Stone, A.G., Fryda, M.R., and Ravet, J.L. (2003). Relating compost measures of stability and maturity to plant growth. Compost science & utilization 11(2), 113-124. https://doi.org/10.1080/1065657X.2003.10702118

DeLong, J.P., Gibert, J.P., Luhring, T.M., Bachman, G., Reed, B., Neyer, A. and Montooth, K.L. (2017). The combined effects of reactant kinetics and enzyme stability explain the temperature dependence of metabolic rates. Ecology and Evolution 7, 3940–3950. https://doi.org/10.1002/ece3.2955

Escamilla-García, P.E., Camarillo-López, R.H., Carrasco-Hernández, R., Fernández-Rodríguez, E. and Legal-Hernández, J.M. (2020). Technical and economic analysis of energy generation from waste incineration in Mexico. Energy Strategy Reviews 31, 100542. https://doi.org/10.1016/j.esr.2020.100542

Estrada-Martínez, R., Favela-Torres, E., Soto-Cruz, N.O., Escalona-Buendía, H.B. and Saucedo-Castañeda, G. (2019). A Mild Thermal Pre-treatment of the Organic Fraction of Municipal Wastes Allows High Ethanol Production by Direct Solid-state Fermentation. Biotechnology and Bioprocess Engineering 24, 401–412. https://doi.org/10.1007/s12257-019-0032-7

Evangelou, A., Chintzios, V., Komilis, D. and Sánchez, A. (2017). Effect of air flowrate on the dynamic respiration activity of the raw organic fraction of municipal solid wastes. Bioresource Technology 224, 748–752. https://doi.org/10.1016/j.biortech.2016.11.109

Gea, T., Barrena, R., Artola, A. and Sánchez, A. (2004). Monitoring the biological activity of the composting process: Oxygen uptake rate (OUR), respirometric index (RI), and respiratory quotient (RQ): Monitoring Biological Activity of Composting. Biotechnology and Bioengineering 88, 520–527. https://doi.org/10.1002/bit.20281

Gao, S., Lu, D., Qian, T. and Zhou, Y. 2021. Thermal hydrolyzed food waste liquor as liquid organic fertilizer. Science of The Total Environment 775, 145786. https://doi.org/10.1016/j.scitotenv.2021.145786

Gonzalez, J.E., Long, C.P. and Antoniewicz, M.R. (2017). Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis. Metabolic Engineering 39, 9–18. https://doi.org/10.1016/j.ymben.2016.11.003

Guo, R., Li, G., Jiang, T., Schuchardt, F., Chen, T., Zhao, Y. and Shen, Y. (2012). Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresource Technology 112, 171–178. https://doi.org/10.1016/j.biortech.2012.02.099

Interiano-López, M. L., Ramírez-Coutiño, V. A., Godinez-Tovar, L. A., Zamudio-Pérez, E., & Rodríguez-Valadez, F. J. (2019). Bioremediation methods assisted with humic acid for the treatment of oil-contaminated drill cuttings. Revista Mexicana de Ingeniería Química, 18(3), 929-937.

https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Interiano

Jiang, T., Schuchardt, F., Li, G., Guo, R. and Zhao, Y. (2011). Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. Journal of Environmental Sciences 23, 1754–1760. https://doi.org/10.1016/S1001-0742(10)60591-8

¬

Jiménez-Rodríguez, J. E., Martínez-Valdez, F. J., Estrada-Martínez, R., Monrroy-Hermosillo, O., Saucedo-Castañeda, G., & Ramírez-Vives, F. (2020). Effect of incubation conditions on the aerobic pretreatment of the organic solid wastes and the volatile fatty acids production. Revista Mexicana de Ingeniería Química, 19(3), 1027-1040. https://doi.org/10.24275/rmiq/Bio849

Kebrom, T.H., Woldesenbet, S., Bayabil, H.K., Garcia, M., Gao, M., Ampim, P., Awal, R., and Fares, A. (2019). Evaluation of phytotoxicity of three organic amendments to collard greens using the seed germination bioassay. Environmental Science and Pollution Research 26, 5454–5462. https://doi.org/10.1007/s11356-018-3928-4

Lee, I.B., Kim, P.J., and Chang, K.W. (2002). Evaluation of stability of compost prepared with Korean food wastes. Soil science and plant nutrition 48(1), 1-8. https://doi.org/10.1080/00380768.2002.10409164

Liwarska-Bizukojc, E., Bizukojc, M. and Ledakowicz, S. (2001). Kinetic model for the process of aerobic biodegradation of organic fraction of municipal solid waste. Bioprocess and Biosystems Engineering 24, 195–202. https://doi.org/10.1007/s004490100252

Ma, J., Liu, L., Xue, Q., Yang, Y., Zhang, Y. and Fei, X. (2021). A systematic assessment of aeration rate effect on aerobic degradation of municipal solid waste based on leachate chemical oxygen demand removal. Chemosphere 263, 128218. https://doi.org/10.1016/j.chemosphere.2020.128218

Manios, I.V., Syminis, I.C., and Kritsotakis, K.I. (1987). Substrates for growth of tomato seedlings. Georgiki Erevna 11(2-3), 149-163.

Martínez-Valdez, F.J., Martínez-Ramírez, C., Martínez-Montiel, L., Favela-Torres, E., Soto-Cruz, N.O., Ramírez-Vives, F. and Saucedo-Castañeda, G. (2015). Rapid mineralisation of the organic fraction of municipal solid waste. Bioresource Technology 180, 112–118. https://doi.org/10.1016/j.biortech.2014.12.083

M’Bou, A.T., Saint-André, L., De Grandcourt, A., Nouvellon, Y., Jourdan, C., Mialoundama, F., and Epron, D. (2010). Growth and maintenance respiration of roots of clonal Eucalyptus cuttings: scaling to stand-level. Plant and soil 332(1), 41-53. https://doi.org/10.1007/s11104-009-0272-y

Okazaki, N., Sugama, S. and Tanaka, T. (1980). Mathematical model for surface culture of koji mold: Growth of koji mold on the surface of steamed rice grains (IX). Journal of Fermentation Technology 58, 471–476.

Pirt, S.J. (1965). The maintenance energy of bacteria in growing cultures. Proceedings of the Royal Society of London. Series B. Biological Sciences 163, 224–231. https://doi.org/10.1098/rspb.1965.0069

Ponsá, S., Puyuelo, B., Gea, T. and Sánchez, A. (2011). Modelling the aerobic degradation of organic wastes based on slowly and rapidly degradable fractions. Waste Management 31, 1472–1479. https://doi.org/10.1016/j.wasman.2011.02.013

Rasapoor, M., Adl, M. and Pourazizi, B., 2016. Comparative evaluation of aeration methods for municipal solid waste composting from the perspective of resource management: A practical case study in Tehran, Iran. Journal of Environmental Management 184, 528–534. https://doi.org/10.1016/j.jenvman.2016.10.029

Rasapoor, M., Nasrabadi, T., Kamali, M. and Hoveidi, H. (2009). The effects of aeration rate on generated compost quality, using aerated static pile method. Waste Management 29, 570–573. https://doi.org/10.1016/j.wasman.2008.04.012

Rashwan, M.A., Alkoaik, F.N., Saleh, H.A.-R., Fulleros, R.B. and Ibrahim, M.N. (2020). Maturity and stability assessment of composted tomato residues and chicken manure using a rotary drum bioreactor. Journal of the Air & Waste Management Association 71(5), 529–539. https://doi.org/10.1080/10962247.2020.1859416

Rodríguez-Fernández, D.E., Rodríguez-León, J.A., De Carvalho, J.C., Karp, S.G., Sturm, W., Parada, J.L. and Soccol, C.R. (2012). Influence of airflow intensity on phytase production by solid-state fermentation. Bioresource Technology 118, 603–606. https://doi.org/10.1016/j.biortech.2012.05.032

Romero De León, L.A., Quinto Diez, P., Tovar Gálvez, L.R., Alvarado Perea, L., López Barragán, C.A., García Rodríguez, C.A. and Reyes León, A. (2021). Biochemical methane potential of water hyacinth and the organic fraction of municipal solid waste using leachate from Mexico City’s Bordo Poniente composting plant as inoculum. Fuel 285, 119-132. https://doi.org/10.1016/j.fuel.2020.119132

Said-Pullicino, D., Erriquens, F.G. and Gigliotti, G. (2007). Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresource Technology 98, 1822–1831. https://doi.org/10.1016/j.biortech.2006.06.018

Saucedo-Castañeda, G., Trejo-Hernández, M.R., Lonsane, B.K., Navarro, J.M., Roussos, S., Dufour, D. and Raimbault, M. (1994). On-line automated monitoring and control systems for CO2 and O2 in aerobic and anaerobic solid-state fermentations. Process Biochemistry 29, 13–24. https://doi.org/10.1016/0032-9592(94)80054-5

Soto-Cruz, O., Favela-Torres, E. and Saucedo-Castañeda, G. (2002). Modeling of growth, lactate consumption, and volatile fatty acid production by Megasphaera elsdenii cultivated in minimal and complex media. Biotechnology Progress 18, 193–200. https://doi.org/10.1021/bp010189y

Thongo M’Bou, A., Saint-André, L., de Grandcourt, A., Nouvellon, Y., Jourdan, C., Mialoundama, F. and Epron, D. (2010). Growth and maintenance respiration of roots of clonal Eucalyptus cuttings: scaling to stand-level. Plant Soil 332, 41–53. https://doi.org/10.1007/s11104-009-0272-y

Veiga-da-Cunha, M., Santos, H. and Van Schaftingen, E. (1993). Pathway and regulation of erythritol formation in Leuconostoc oenos. Journal of Bacteriology 175, 3941–3948. https://doi.org/10.1128/JB.175.13.3941-3948.1993

Yu, H., Xie, B., Khan, R. and Shen, G. (2018). The changes in carbon, nitrogen components and humic substances during organic-inorganic aerobic co-composting. Bioresource Technology 271, 228-235. https://doi.org/10.1016/j.biortech.2018.09.088

Published
2021-10-07
How to Cite
Estrada-Matínez, R., Carrillo-Sancen, G., Cerón-Montes, G., Garrido-Hernandez, A., & Martínez-Valdez, F. (2021). Mathematical modeling for monitoring and controlling aerobic degradation conditions of the organic fraction of urban solid waste. Revista Mexicana De Ingeniería Química, 20(3), IA2479. https://doi.org/10.24275/rmiq/IA2479
Section
Environmental Engineering