Exopolysaccharide-producing bacteria improves survival and proteolytic profile of Lactobacillus rhamnosus gg added to semi-ripened cheese

  • E. Contreras-López
  • J. Jaimez-Ordaz
  • G.M. Rodríguez-Serrano
  • A.E. Cruz-Guerrero
  • J. Ramírez-Godínez
  • A. Castañeda-Ovando
  • L.G. González-Olivares
Keywords: Probiotic, exopolysaccharide, semi-ripened cheese, proteolytic activity


Currently, the interest of the food industry on the use of probiotics in order to provide beneficial effects is increasing. However, one limitation is getting microorganisms to survive in food matrices. In this work, protective effect of exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 on Lactobacillus rhamnosus GG survival during semi-ripening of cheese, was analyzed. Ripening was carried out at 14 ° C for 28 days in a controlled RH chamber. Scanning electron microscopy (SEM) was performed to determine interactions of probiotic with the exopolysaccharide. During ripening process, the proteolytic activity was determined through TNBS, SDS-PAGE and size exclusion-HPLC techniques. Viability of probiotic was measured by plate count. Cheese inoculated with both strains showed an improvement in probiotic survival. Exopolysaccharide was shown to have an effect on protein aggregation and cheese structural uniformity. Micrographs revealed a direct interaction between probiotic and exopolysaccharide. Proteolytic capacity did not decrease, and the generation and decrease of low molecular weight peptides (less than 3 kDa) was verified throughout the ripening process. Thus, using an exopolysaccharide-producing strain during cheese ripening has a positive effect on probiotic survival when they are used as starter cultures.


Awad, S, Hassan, A.N. and Halaweish, F. (2005). Application of Exopolysaccharide-Producing Cultures in Reduced-Fat Cheddar Cheese: Composition and Proteolysis. Journal of Dairy Science 88, 4195-4203. https://doi.org/10.3168/jds.S0022-0302(05)73105-2

Badel, S., Bernardi, T. and Michaud, P. (2011). New perspectives for Lactobacilli exopolysaccharide. Biotechnology Advances 29, 54-66. https://doi.org/10.1016/j.biotechadv.2010.08.011

Bancalari, E., D’Incecco, P., Savo-Sardaro, M.L., Neviani, E., Pellegrino, L. and Gatti, M. (2019). Impedance microbiology to speed up the screening of lactic acid bacteria exopolysaccharide production. International Journal of Food Microbiology 306,108268. https://doi.org/10.1016/j.ijfoodmicro.2019.108268

Bintsis T. (2018). Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiology 4, 665–684. https://doi.org/ 10.3934/microbiol.2018.4.665

Ceja-Medina, L.I., Medina-Torres, L., González-Ávila, M., Martínez-Rodríguez, J.C., Andrade-González, I., Calderón-Santoyo, M., Ragazzo-Sánchez, J.A. and Ortíz-Basurto, R.I. (2021). In vitro symbiotic activity of Lactobacillus plantarum encapsulated with mixtures of Aloe vera mucilage, agave fructans and food aditives as wall materials. Revista Mexicana de Ingeniería Química. 20, 711-723.

Chen, C., Zhao, S., Hao, G., Yu, H., Tian, H., and Zaho, G. (2017). Role of lactic acid bacteria on the yogurt flavor: A review. International Journal of Food Properties 20, S316-S330. https://doi.org/10.1080/10942912.2017.1295988

Chung, B., and Kamal-Eldin, A. (2020). Bioactive compounds produced by probiotics in food products. Current Opinions in Food Science 32, 7-82. https://doi.org/10.1016/j.cofs.2020.02.003

Coelho-Nepomuceno, R.S., Gonçalves-Costa Junior, L.C. and Buena-Costa, R.G. (2016). Exopolysaccharide-producing culture in the manufacture of Prato cheese. LWT. 72, 383-389. https://doi.org/10.1016/j.lwt.2016.04.053

Costa, G.M., Paula, M.M., Barao, C.E., Klososki, S.J., Bonafe, E.G., Visentainer, J.V., Cruz, A.G. and Pimentel, T.C. (2019). Yoghurt added with Lactobacillus casei and sweetened with natural sweeteners and/or prebiotics: Implications on quality parameters and probiotic survival. Int.ernational Dairy Journal 97,139–148. http://dx.doi.org/10.1016/j.idairyj.2019.05.007

Dinkçi, N., Akdeniz, V. and Akalin, S. (2019). Survival of probiotics in functional foods during shelf life. In: Food Quality and Shelf Life, (C. M. Galanakis ed.) Pp. 201-233 Amsterdam, NL

Farnworth, E. (2008). Handbookof Fermented Functional Foods. CRC Press. Quebec, CA

Gasson, M. J. and Vos, W.M. (1994). The proteolytic system of lactic acid bacteria. In: Genetics and Biotechnology of Lactic Acid Bacteria, (Gasson, M. J.; Vos, W. M. ed) Pp 169-210. Blackie Academic y Proffessional an Imprint of Chapman and Hall, Londres, UK

Grobben, G., van Casteren, W., Schols, H., Oosterveld, A., Sala, G., Smith, M.R., Sikkema, J. and de Bont, J. (1997). Analysis of the exopolysaccharides produced by {it Lactobacillus delbrueckii} subsp. {it bulgaricus} NCFB 2772 grown in continuous culture on glucose and fructose. Applied Microbiology and Biotechnology 48, 516–521. https://doi.org/10.1007/s002530051089

Gomand, F, F., Borges, J., Burgain, J., Guerin, Revol-Junelles, A.M. and Gaiani, C. (2019). Food Matrix Design for Effective Lactic Acid Bacteria Delivery. Annual Review in Food Science and Technology 10, 285-310. https://doi.org/10.1146/annurev-food-032818-121140

González-Olivares, L.G., Jiménez-Guzmán, J., Cruz-Guerrero, A., Rodríguez- Serrano, G., Gómez-Ruiz, L. and García-Garibay M. (2011). Liberación de péptidos bioactivos por bacterias lácticas en leches fermentadas comerciales. Revista Mexicana de Ingeniería Química 10:179-188.

Guerin, J., Burgain, J., Borges, F., Bhandari, B., Desobry, S., Scher J. and Gaiani C. (2017). Use imaging techniques to identify efficient controlled release systems of {it Lactobacillus rhamnosus} GG during in vitro digestion. Food and Function, 8, 1587-1598. https://doi.org/10.1039/C6FO01737A

Guzel-Seydim, Z.B., Sezgin, E. and Seydim, A.C. (2005). Influences of exopolysaccharide producing cultures on the quality of plain set type yogurt. Food Control 16, 205-209. https://doi.org/10.1016/j.foodcont.2004.02.002

Hassan, A.N. (2008). ADSA Foundation Scholar Award: Possibilities and Challenges of Exopolysaccaride-Producing Lactic Cultures in Dairy Foods. Journal of Dairy Science. 91: 1282-1298. https://doi.org/10.3168/jds.2007-0558

Hassan, A.N., Frank, J.F. and Elsoda, M. (2003). Observation of bacterial exopolysaccharide in dairy products using cryo-scanning electron microscopy. International Dairy Journal 13, 755–762. https://doi.org/10.1016/S0958-6946(03)00101-8

Hassan, A.N., Frank, J.F., Farmer, M.A., Schmidt, K.A. and Shalabi, S.I. (1995). Formation of yoghurt microstructure and three dimensional visualization as determined by confocal scanning laser microscopy. Journal of Dairy Science 78, 2629-2636. https://doi.org/10.3168/jds.S0022-0302(95)76892-8

Hernández-Rosas, F., Castilla-Marroquín, J.D., Loeza-Corte, J.M., Lizardi-Jiménez, M.A. and Hernández-Martínez, R. (2021). The importance of nitrogen and carbon sources on exopolisaccharide synthesis by lactic acid bacteria and their industrial importance. Revista Mexicana de Ingeniería Química. 20, Bio2429

Jaimez-Ordaz, J., Martínez-Ramírez, X., Cruz-Guerrero, A.E., Contreras- López, E., Ayala-Niño, A., Castro-Rosas, J. and González-Olivares, L.G. (2018). Survival and proteolytic capacity of probiotics in a fermented milk enriched with agave juice and stored in refrigeration. Food Siience and Technology. (Campinas). 39, 188-194. http://dx.doi.org/10.1590/fst.41117

Juillard, V., Furlan, S., Foucaud C. and Richard, J. (1996). Mixed cultures of proteinase- positive and proteinase-negative strains of Lactococcus lactis in milk. Journal of Dairy Science 79, 964-970. https://doi.org/10.3168/jds.S0022-0302(96)76447-0

Karimi, R., Mortazavian, A.M. and Da Cruz, A.G. (2011). Viability of probiotic microorganisms in cheese during production and storage: a review. Dairy Science and Technology 91, 283-308. https://doi.org/10.1007/s13594-011-0005-x

Kiekens, S., Vandenheuvel, D., Broeckx, G., Claes, I., Allonsius, C., De Boeck, I., Thys, S., Timmermans, J. P., Kiekens, F. and Lebeer, S. (2019). Impact of spray-drying on the pili of {it Lactobacillus rhamnosus} GG. Microbial Biotechnology 12, 849-855. https://doi.org/10.1111/1751-7915.13426

Lane, C.N. and Fox, P.F. (1996). Contribution of starter and adjunct lactobacilli to proteolysis in Cheddar cheese during ripening. International Dairy Journal 6:715728. https://doi.org/10.1016/0958-6946(95)00067-4

Leroy, F. and De Vuyst, L. (2016). Advances in production and simplified methods for recovery and quantification of exopolysaccharides for applications in food health. Journal of Dairy Science 99, 3229-3238. https://doi.org/10.3168/jds.2015-9936

López, C., Camier B. and Gassi, J.Y. (2007). Development of the milk fat microstructure during the manufacture and ripening of Emmental cheese observed by confocal laser scanning microscopy. International Dairy Journal 17, 235-247. https://doi.org/10.1016/j.idairyj.2005.12.015

Lucatto, J.N., da Silva-Buzanello, R.A., Terroso-Gama de Menzoza, S.N., Lazarotto, T.C., Sanchez, J.L., Bona, E. and Drunkler, D.A. (2020). Performance of different microbial cultures in potentially probiotic and prebiotic yoghurts from cow and goat milks. Int. Journal of Dairy Technology 70, 144-156. https://doi.org/10.1111/1471-0307.12655

Lynch, K.M., Coffey, A. and Arendt, E.K. (2018). Exopolysaccharide producing lactic acid bacteria: Their techno-functional role and potential application in gluten-free bread products. Food Research International 110, 52-61. https://doi.org/10.1016/j.foodres.2017.03.012

Mathur, H., Beresford, T.P. and Cotter, P.D. (2020). Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients, 12, 1679. https://doi.org/10.3390/nu12061679

McSweeney, P.L., Holson, N.F., Fox, P.F., Healy, A. and Hojrup, P. (1993). Proteolytic specificity of chymosin on bovine αs1-casein. Journal of Dairy Research 60:401-412. https://doi.org/10.1017/S0022029900027734

Melgar-Lalanne, G., Rivera-Espinoza, Y., Farrera-Rebollo, R. and Hernández, Sánchez, H. (2014). Survival under stress of halotolerant lactobacilli with probiotic properties. Revista Mexicana de Ingeniería Química 13, 323-335.

Ningtyas, D.W., Bhandari, B., Bansal, N. and Prakash, S. (2019). The viability of probiotic {it Lactobacillus rhamnosus} (non-encapsulated and encapsulated) in functional reduced-fat cream cheese and its textural properties during storage. Food Control, 100, 8-16. https://doi.org/10.1016/j.foodcont.2018.12.048

Oluk, A.C., Güven, M. and Hayaloglu, A.A. (2013). Proteolysis texture and microstructure of low‐fat Tulum cheese affected by exopolysaccharide‐producing cultures during ripening. International Journal of Food Science and Technology 49, 435–443. https://doi.org/10.1111/ijfs.12320

Parra-Huertas, R.A. (2010). Review. Bacterias ácido lácticas: Papel funcional en los alimentos. Biotecnología en el Sector Agrario y Agroindustrial. 8, 93-105

Patel, S., Majumder, A. and Goyal, A. (2012). Potentials of exopolysaccharides from lactic acid bacteria. Indian Journal of Microbiology, 52, 3-12. http://dx.doi.org/10.1007/s12088-011-0148-8

Pivetta, F.P., da Silva, M.N., Tagliapietra B.L. and Richards, N.S.S. (2020). Addition of green banana biomass as partial substitute for fat and encapsulated Lactobacillus acidophilus in requeijão cremoso processed cheese. Food Science and Technology (Campinas) 40, 451-457. http://dx.doi.org/10.1590/fst.03919.

Ramírez-Godínez, J., Gutiérrez-Rodríguez, J.F., Contreras-López, E., Rodríguez-Serrano, G.M., Castañeda-Ovando, A., Jaimez-Ordaz, J. and González-Olivares, L.G. (2021). Agave Juice improves survival and proteolytic activity of {it Lactobacillus rhamnosus} GG during ripening of semi-ripened Mexican cheese. Food Science and Technology (Campinas) in press: https://doi.org/10.1590/fst.30820

Rojas-Ronquillo, R., Cruz-Guerrero, A., Flóres-Nájera, A., Rodríguez-Serrano, G., Gómez-Ruiz, L., Reyes-Grajeda, J.P., Jiménez-Guzmán, J. and García-Garibay, M. (2012). Antithrombotic and angiotensin-converting enzyme inhibitory properties of peptides released from bovine casein by Lactobacillus casei Shirota. International Dairy Journal 26, 147–154. https://doi.org/10.1016/j.idairyj.2012.05.002

Sadaghdar, Y., Mortazavian, A.M. and Ehsani, M.R. (2012). Survival and activity of 5 Probiotic Lactobacilli strains in 2 types of Flavored Fermented Milk. Food Science and Biotechnology 21, 51-157. http://dx.doi.org/10.1007/s10068-012-0019-z

Vinderola, C.G., Mocchiutti, P. and Reinheimer, J.A. (2002). Interactions among lactic acid starter and probiotic bacteria used for fermented dairy products. Journal of Dairy Science 85, 721-729. https://doi.org/10.3168/jds.S0022-0302(02)74129-5

Wang, J., Fang, X., Wu, T., Min, W., and Yang, Z. (2018). Exopolysacharide producing Lactobacillus plantarum SKT109 as adjunct culture in Cheddar cheese production. LWT 97, 419-426. https://doi.org/10.1016/j.lwt.2018.07.011

Wang, J., Wu, T., Fang, X. and Yang, Z. (2019). Manufacture of low-fat Cheddar cheese by exopolysaccharide-producing Lactobacillus plantarum JLK0142 and its functional properties. Journal of Dairy Science 102:3825-3838. https://doi.org/10.3168/jds.2018-15154

Xu, Y., Cui, Y., Yue, F., Liu, L., Shan, Y., Liu, B, Zhou,Y. and Lü, X. (2019). Exopolysaccharide produced by lactic acid bacteria and bifidobacteria: Structures, physiochemical functions and applications in the food industry. Food Hydrocolloids 94, 475-499. https://doi.org/10.1016/j.foodhyd.2019.03.032

Zendeboodi, F., Khorshidian, N., Motazavian, A.M. and da Cruz, A.G., (2020). Probiotic: conceptualization from a new approach. Current Opininion in Food Scince 32, 103-123. https://doi.org/10.1016/j.cofs.2020.03.009

Zhou, Y, Cui, Y. and Qu, X. (2019). Exopolysaccharides of lactic acid bacteria: structure, bioactivity and associations: A review. Carbohydrate Polymers 207, 317-332. https://doi.org/10.1016/j.carbpol.2018.11.093

How to Cite
Contreras-López, E., Jaimez-Ordaz, J., Rodríguez-Serrano, G., Cruz-Guerrero, A., Ramírez-Godínez, J., Castañeda-Ovando, A., & González-Olivares, L. (2021). Exopolysaccharide-producing bacteria improves survival and proteolytic profile of Lactobacillus rhamnosus gg added to semi-ripened cheese. Revista Mexicana De Ingeniería Química, 20(3), Bio2483. https://doi.org/10.24275/rmiq/Bio2483

Most read articles by the same author(s)