Effect of particle-size distribution on LiFePO4 cathode electrochemical performance in Li-ion cells

Keywords: LiFePO4, Battery, Cathode, Particle size

Abstract

LiFePO4 has structural and electrochemical advantages that make it an important candidate as a cathodic material. Its low cost, structural stability and low toxicity makes it a good option for energy backup systems. However, it is necessary to address the problem with its low ability to operate at high cycling speeds due its low electrical conductivity and low diffusion coefficient. In this work, the LiFePO4 powders were treated with ultrasound for different periods of time to study the effect of reducing the agglomerated particles in the wet mixture during the manufacturing stage. The samples were characterized by X-ray diffraction, scanning electron microscope, particle-size analysis and electrochemical methods. The results revealed that the ultrasonic treatment reduced the size particle of both active material and conductive additive improving the electrochemical behavior and specific capacity of the samples that were treated for longer periods of time.

References

Bensalah, N., Dawood, H. (2016). Review on synthesis, characterizations, and electrochemical properties of cathode materials for lithium ion batteries. Journal of Material Sciences and Engineering, 5(4). doi: 10.4172/2169-0022.1000258.

Chung, D. W., Ebner, M., Ely, D. R., Wood, V., García, R. E. (2013). Validity of the Bruggeman relation for porous electrodes. Modelling and Simulation in Materials Science and Engineering, 21(7), 074009. doi: 10.1088/0965-0393/21/7/074009

Churikov, A., Ivanishchev, A., Ivanishcheva, I., Sycheva, V., Khasanova, N., Antipov, E. (2010). Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques. Electrochimica Acta, 55(8), 2939-2950. doi: 10.1016/j.electacta.2009.12.079

Fergus, J. W. (2010). Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources 195(4), 939-954.http://dx.doi.org/10.1016/j.jpowsour.2009.08.089

Finegan, D. P., Zhu, J., Feng, X., Keyser, M., Ulmefors, M., Li, W., Cooper, S. J. (2021). The application of data-driven methods and physics-based learning for improving battery safety. Joule 5 (2), 316-329.https://doi.org/10.1016/j.joule.2020.11.018

Gaberscek, M., Moskon, J., Erjavec, B., Dominko, R., Jamnik, J. (2008). The importance of interphase contacts in Li ion electrodes: the meaning of the high-frequency impedance arc. Electrochemical and Solid-State Letters 11(10), A170-A174.doi: 10.1149/1.2964220

Gao, F., Tang, Z. (2008). Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochimica Acta 53(15), 5071-5075.https://doi.org/10.1016/j.electacta.2007.10.069

García-Limón, B., Salazar-Gastelum, M., Lin, S., Calva-Yañez, J., Pérez-Sicairos, S. (2019). Preparation and characterization of PVDF/PES/NAFION® 117 membranes with potential application in vanadium flow batteries. Revista Mexicana de Ingeniería Química 18(2), 477-486. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Garcia

Hu, Y., Zhao, X., Suo, Z. (2010). Averting cracks caused by insertion reaction in lithium–ion batteries. Journal of Materials Research 25(6), 1007-1010. doi: 10.1557/JMR.2010.0142

Julien, C. M., Zaghib, K., Mauger, A., Groult, H. (2012). Enhanced electrochemical properties of LiFePO4 as positive electrode of Li-ion batteries for HEV application. Advances in Chemical Engineering and Science 2(3), 321. http://dx.doi.org/10.4236/aces.2012.23037

Levi, M. D., Aurbach, D. (1997). Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes. The Journal of Physical Chemistry B 101(23), 4641-4647. https://doi.org/10.1021/jp9701911

Li, W., Erickson, E. and Manthiram, A. (2020). High-nickel layered oxide cathodes for lithium-based automotive batteries. Natural Energy 5(1), 26-34. https://doi.org/10.1002/adma.202002718

Liu, W., Guo, Z., Young, W., Shieh, D., Wu, H., Yang, M. and Wu, N. (2005). Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive. Journal of Power Sources 140(1), 139-144. doi: 10.1016/j.jpowsour.2004.07.032

Llusco, A., Grageda, M. and Ushak, S. (2020). Kinetic and Thermodynamic Studies on Synthesis of Mg-Doped LiMn2O4 Nanoparticles. Nanomaterials 10(7), 1409. doi:10.3390/nano10071409

Miao, C., Bai, P., Jiang, Q., Sun, S. and Wang, X. (2014). A novel synthesis and characterization of LiFePO4 and LiFePO4/C as a cathode material for lithium-ion battery. Journal of Power Sources 246, 232-238. http://dx.doi.org/10.1016/j.jpowsour.2013.07.077

Padhi, A., Nanjundaswamy, K. and Goodenough, J. (1997). Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of The Electrochemical Society, 144(4), 1188-1194. doi: 10.1149/1.1837571.

Pinna, E. G., Martínez, A., Tunez, F. M., Drajlin Gordón, D. S., Rodriguez, M. (2019). Acid leaching of LiCoO2 from LiBs: Thermodynamic study and reducing agent effect. Revista Mexicana de Ingeniería Química 18(2), 441-449. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Pinna

Ramadesigan, V., Methekar, R., Latinwo, F., Braatz, R. and Subramanian, V. (2010). Optimal porosity distribution for minimized ohmic drop across a porous electrode. Journal of The Electrochemical Society 157(12), A1328. https://doi.org/10.1149/1.3495992

Satyavani, T., Ramya Kiran, B., Rajesh Kumar, V., Srinivas Kumar, A. and Naidu, S. (2016). Effect of particle size on dc conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells. Engineering Science and Technology, an International Journal 19(1), 40-44. http://dx.doi.org/10.1016/j.jestch.2015.05.011

Tan, P., Chen, B., Xu, H., Cai, W., He, W., Zhang, H. (2018). Integration of Zn–Ag and Zn–Air batteries: a hybrid battery with the advantages of both. ACS Applied Materials & Interfaces, 10(43), 36873-36881. https://doi.org/10.1021/acsami.8b10778

Wang, L., Wu, H., Hu, Y., Yu, Y., Huang, K. (2019). Environmental Sustainability Assessment of Typical Cathode Materials of Lithium-Ion Battery Based on Three LCA Approaches. Processes 7(2), 83. https://doi.org/10.3390/pr7020083

Wang, Z., Zhao, T., Takei, M. (2017). Morphological structure characterizations in lithium-ion battery (LIB) slurry under shear rotational conditions by on-line dynamic electrochemical impedance spectroscopy (EIS) method. Journal of The Electrochemical Society 164(9), A2268. doi: 10.1149/2.0391712jes

Xi, L. J., Wang, H.-E., Lu, Z. G., Yang, S. L., Ma, R. G., Deng, J. Q., Chung, C. Y. (2012). Facile synthesis of porous LiMn2O4 spheres as positive electrode for high-power lithium ion batteries. Journal of Power Sources 198, 251-257. https://doi.org/10.1016/j.jpowsour.2011.09.100

Zahnow, J., Bernges, T., Wagner, A., Bohn, N., Binder, J., Zeier, W., Elm, M., Janek, J. (2021). Impedance analysis of NCM cathode materials: electronic and ionic partial conductivities and the influence of microstructure. ACS Applied Energy Materials 4(2), 1335-1345. https://doi.org/10.1021/acsaem.0c02606

Zhai, N., Li, M., Wang, W., Zhang, D., Xu, D. (2006). The application of the EIS in Li-ion batteries measurement. Paper presented at the Journal of Physics: Conference Series. doi: 10.1088/1742-6596/48/1/215

Zhao, H., Yuca, N., Yang, Q. and Liu, G. (2016). A Convenient and Versatile Method To Control the Electrode Microstructure toward High-Energy Lithium-Ion Batteries. Nano Letters 16(7), 4686-4690. doi: 10.1021/acs.nanolett.6b02156

Zhu, M., Park, J., Sastry, A. M. (2012). Fracture analysis of the cathode in Li-ion batteries: A simulation study. Journal of The Electrochemical Society 159(4), A492-A498. doi: 10.1149/2.045204jes

Published
2022-06-30
How to Cite
Cofre, P., Quispe, A., & Grageda, M. (2022). Effect of particle-size distribution on LiFePO4 cathode electrochemical performance in Li-ion cells. Revista Mexicana De Ingeniería Química, 21(2), Mat2493. https://doi.org/10.24275/rmiq/Mat2493
Section
Materials