Prediction of the dynamic behavior of a solar chimney by means of artificial neural networks

  • A. Tlatelpa-Becerro Escuela de Estudios Superiores de Yecapixtla-UAEM
  • R. Rico-Martínez
  • M. Cárdenas-Manríquez
  • G. Urquiza
  • F.B. Alarcón-Hernández
  • M.C. Fuentes-Albarran
Keywords: Artificial neural networks, mathematical model, thermal comfort

Abstract

A strategy is described for the construction of a reference model for the design of solar chimneys that includes variations in geometry and materials of the chimney's components. The model will be developed from dynamic simulations in the transient state of the solar chimney under solar irradiation real conditions. The strategy is based on the artificial neural networks (ANNs) generalization properties allowing predictions for multiple geometries and materials of the solar chimney. The strategy can serve as a basis for cost optimization during the design stage by allowing selection of the best geometry and materials given the desired performance specification for the solar chimney, including operating and replacement costs.

References

Akbari, S., Simonson, C.J. and Besant, R.W. (2012). Application of neural networks to predict the transient performance of a run-around membrane energy exchanger for yearly non-stop operation. International Journal of Heat and Mass Transfer 55(21–22), 5403–5416. https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.033

Akdag, U., Komur, M.A. and Ozguc, A.F. (2009). Estimation of heat transfer in oscillating annular flow using artifical neural networks. Advances in Engineering Software 40(9), 864–870. https://doi.org/10.1016/j.advengsoft.2009.01.010

Awbi, H. B. (1994). Design considerations for naturally ventilated buildings. Renewable Energy 5(5–8), 1081–1090. https://doi.org/10.1016/0960-1481(94)90135-X

Bansal, N.K., Mathur, J., Mathur, S. and Jain, M. (2005). Modeling of window-sized solar chimneys for ventilation. Building and Environment 40(10), 1302-1308. https://doi.org/10.1016/j.buildenv.2004.10.011

Bansal, N.K., Mathur, R. and Bhandari, M.S. (1994). A study of solar chimney assisted wind tower system for natural ventilation on buildings. Building and environment 29(4), 495-500. https://doi.org/10.1016/0360-1323(94)90008-6

Beigzadeh, R. and Rahimi, M. (2012). Prediction of heat transfer and flow characteristics in helically coiled tubes using artificial neural networks. International Communications in Heat and Mass Transfer 39(8), 1279–1285. https://doi.org/10.1016/j.icheatmasstransfer.2012.06.008

Brusamarello, C., Di Domenico, M., Da Silva, C., and de Castilhos, F. (2019). A comparative study between multivariate calibration and artificial neural network in quantification of soybean biodiesel. Revista Mexicana De Ingeniería Química, 19(1), 123-132. https://doi.org/10.24275/rmiq/Bio579

Cengel, Y. and Boles, M. (2015). Thermodynamic. McGraw-Hill Education, México.

Chantawong, P., Hirunlabh, J., Zeghmati, B., Khedari, J., Teekasap, S. and Win, M.M. (2006). Investigation on thermal performance of glazed solar chimney walls. Solar Energy 80(3), 288–297. https://doi.org/10.1016/j.solener.2005.02.015

Díaz, G,, Sen, M., Yang, K. T. and McClain, R.L. (2001). Dynamic prediction and control of heat exchangers using artificial neural networks. International Journal of Heat and Mass Transfer 44(9), 1671–1679. https://doi.org/10.1016/S0017-9310(00)00228-3

Díaz-González, L., Hidalgo-Davila, C., Santoyo, E. and Hermosillo-Valadez, J. (2020). Evaluation of training techniques of artificial neural networks for geothermometric studies of geothermal systems. Revista Mexicana De Ingeniería Química, 12(1), 105-120. http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1462

Duffie, J.A., Beckman, W.A. and McGowan, J. (1985). Solar engineering of thermal processes. John Wiley & Sons, Inc, Canada.

Esen, H. and Inalli, M. (2009). Modelling of a vertical ground coupled heat pump system by using artificial neural networks. Expert Systems with Applications 36(7), 10229–10238. https://doi.org/10.1016/j.eswa.2009.01.055

González, G.R., Rico, M.R. and Kevrekidis, I. G. (1998). Identification of distributed parameter systems: a neural net based approach. Computers and Chemical Engineering 22, 965-968. https://doi.org/10.1016/S0098-1354(98)00191-4

Hirunlabh, J., Kongduang, W., Namprakai, P. and Khedari, J. (1999). Study of natural ventilation of houses by a metallic solar wall under tropical climate. Renewable Energy 18(1), 109–119. https://doi.org/10.1016/S0960-1481(98)00783-6

Imran, A.A., Jalil, J.M. and Ahmed, S.T. (2015). Induced flow for ventilation and cooling by a solar chimney. Renewable Energy 78, 236–244. https://doi.org/10.1016/j.renene.2015.01.019

Incropera, F.P. and DeWitt, D.P. (1999). Fundamentals of heat transfer. Pearson Education, México.

Islamoglu, Y. (2003). A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger-use of an artificial neural network model. Applied Thermal Engineering 23(2), 243–249. https://doi.org/10.1016/S1359-4311(02)00155-2

Karima, E.A. and Saif, W.M. (2012). Experimental and numerical studies of solar chimney for natural ventilation in iraq. Energy and Buildings 47, 450–57. https://doi.org/10.1016/j.enbuild.2011.12.014

Khedari, J., Kaewruang, S., Pratinthong, N. and Hirunlabh, J. (1999). Natural ventilation of houses by a trombe wall under the climatic conditions in thailand. International Journal of Ambient Energy 20(2), pp. 85–94. https://doi.org/10.1080/01430750.1999.9675323

Kohloss, F.H. (2004). ASHRAE for standard ventilation for acceptable air quality. ANSI/ASHRAE Addendum n to ANSI/ASHRAE Standard 62-2001 8400.

Krischer, K., Rico, M.R., Kevrekidis, G., Rotermund, H.H., Ertl, G., and Hudson, J.L. (1993). Model identification of a spatiotemporally varying catalytic reaction. AIChE Journal 39(1), 89-98. https://doi.org/10.1002/aic.690390110

Kuźnicka, B. (2009). Erosion-corrosion of heat exchanger tubes. Engineering Failure Analysis 16(7), 2382–2387. https://doi.org/10.1016/j.engfailanal.2009.03.026

Layeni, A.T., Adekojo, W.M., Babatunde, A.A., Bukola, O.B., Collins, N.N. and Solomon, O.G. (2020). Computational modelling and simulation of the feasibility of a novel dual purpose solar chimney for power generation and passive ventilation in buildings. Scientific African 8, 1-13. https://doi.org/10.1016/j.sciaf.2020.e00298

Li, W., Yu, G., Zagaglia, D., Green, R. and Yu, Z. (2020). CFD Modelling of a thermal chimney for air-cooled condenser. Geothermics 88, 1-19. https://doi.org/10.1016/j.geothermics.2020.101908

Najid, A., Hayat, M.F., Hamad, N. and Iuqman, M. (2012). Energy consumption and economic growth: evidence from pakistan. Australian Journal of Business and Management Research 2(6), 49–53. https://doi.org/10.1002/mde.4090050108

Oliva, A.I., Maldonado, R.D., Díaz, E. A. and Montalvo, A.I. (2013). A high absorbance material for solar collectors’ applications. Third Congress On Materials Science And Engineering (CNCIM-Mexico 2012). IOP Conference Series: Materials Science And Engineering 45(1), 2–6. doi.org/10.1088/1757-899X/45/1/012019

Patel, S.K., Prasad, D. and Ahmed, R.M. (2014). Computational studies on the effect of geometric parameters on the performance of a solar chimney power plant. Energy Conversion and Management 77, 424–431. https://doi.org/10.1016/j.enconman.2013.09.056

Peng, H. and Ling, X. (2009). Neural networks analysis of thermal characteristics on plate-fin heat exchangers with limited experimental data. Applied Thermal Engineering 29(11–12), 2251–2256. https://doi.org/10.1016/j.applthermaleng.2008.11.011

Ramadan, B. and Nader S.A. (2008). An analytical and numerical study of solar chimney use for room natural ventilation. Energy and Buildings 40(5), 865–873. https://doi.org/10.1016/j.enbuild.2007.06.005

Ramadan, B. and Nader S.A. (2009). Effect of solar chimney inclination angle on space flow pattern and ventilation rate. Energy and Buildings 41(2), 190–196. https://doi.org/10.1016/j.enbuild.2008.08.009

Ranjbar, K. (2010). Effect of flow induced corrosion and erosion on failure of a tubular heat exchanger. Materials and Design 31(1), 613–619. https://doi.org/10.1016/j.matdes.2009.06.025

Reynoso-Jardón, E., Tlatelpa-Becerro, A., Rico-Martínez, R., Calderón-Ramírez, M. and Urquiza, G. (2019). Artificial neural networks (ANN) to predict overall heat transfer coefficient and pressure drop on a simulated heat exchanger. International Journal of Applied Engineering Research 14(13), 3097–3103.

Saifi, N., Settou, N., Dokkar, B., Negrou, B. and Chennouf, N. (2012). Experimental study and simulation of airflow in solar chimneys. Energy Procedia 18, 1289–1298. https://doi.org/10.1016/j.egypro.2012.05.146

Sakonidou, E.P., Karapantsios, T.D., Balouktsis, A.I. and Chassapis, D. (2008), "Modeling of the optimum tilt of a solar chimney for maximum air flow. Solar Energy 82(1), 80–94. https://doi.org/10.1016/j.solener.2007.03.001

Shi, L. and Zhang, G. (2016). An empirical model to predict the performance of typical solar chimneys considering both room and cavity configurations. Build. Environ 103, 250-261. https://doi.org/10.1016/j.buildenv.2016.04.024

Sudprasert, S., Chinsorranant, Ch. and Rattanadecho, P. (2016). Numerical study of vertical solar chimneys with moist air in a hot and humid climate. Int. J. Heat Mass Tran 102, 645-656. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.054

Tlatelpa-Becerro, A., Castro-Gómez, L., Urquiza, G. and Rico-Martínez, R. (2015). Prediction of the outlet temperature of an experimental heat exchanger using artificial neural networks. Computational Methods and Experimental Measurements XVII 1(2015), 213–220. https://doi.org/10.2495/cmem150191

Tlatelpa-Becerro, A., Rico-Martínez, R., Castro-Gómez, L., Urquiza, G. and Calderón-Ramírez, M. (2018). Artificial neural networks ( ann ) and kalman filter algorithms to predict output temperatures on a heat exchanger. International Journal of Applied Engineering Research 13(17), 13130–13135.

Usman, A. and Nusair, A.K. (2008). Failure analysis of heat exchanger tubes. Engineering Failure Analysis 15(1–2), 118–128. https://doi.org/10.1016/j.engfailanal.2006.11.051

White, F.M. (2004). Fluid mechanics. McGraw-Hill, Inc, Madrid.

Xie, G. N., Wang, Q. W., Zeng, M. and Luo, L. Q. (2007). Heat transfer analysis for shell-and-tube heat exchangers with experimental data by artificial neural networks approach. Applied Thermal Engineering 27(5–6), 1096–1104. https://doi.org/10.1016/j.applthermaleng.2006.07.036

Xie, G., Sunden, B., Wang, Q. and Tang, T. (2009). Performance predictions of laminar and turbulent heat transfer and fluid flow of heat exchangers having large tube-diameter and large tube-row by artificial neural networks. International Journal of Heat and Mass Transfer 52(11–12), 2484–2497. https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.036

Zhang, J. and Haghighat, F. (2010). Development of artificial neural network based heat convection algorithm for thermal simulation of large rectangular cross-sectional area earth-to-air heat exchangers. Energy and Buildings 42(4), 435–440. https://doi.org/10.1016/j.enbuild.2009.10.011

Zhongbao, L. and Su, Y. (2012). An unsteady model for natural ventilation with solar chimney. Advanced Materials Research 354–355, 286–289. https://doi.org/10.4028/www.scientific.net/AMR.354-355.286

Published
2022-02-14
How to Cite
Tlatelpa-Becerro, A., Rico-Martínez, R., Cárdenas-Manríquez, M., Urquiza, G., Alarcón-Hernández, F., & Fuentes-Albarran, M. (2022). Prediction of the dynamic behavior of a solar chimney by means of artificial neural networks. Revista Mexicana De Ingeniería Química, 21(1), IE2495. https://doi.org/10.24275/rmiq/IE2495
Section
Energy Engineering

Most read articles by the same author(s)