CO2 capture on an optimally prepared highly microporous KOH-activated carbon from rice husk

  • E. Gutiérrez-Bonilla
  • F. Granados-Correa Instituto Nacional de Investigaciones Nucleares
  • G. Roa-Morales
  • P. Balderas-Hernández
Keywords: rice-husk, KOH-chemically activated carbon, CO2 capture, adsorption, microporous.

Abstract

In this study, rice husk was used as a low-cost agro-waste to produce optimally a high microporous KOH-chemically activated carbon for efficient CO2 capture. In order to find the optimum conditions to prepare this carbon-based adsorbent, the rice husk was subject to different carbonization temperatures, followed by various KOH impregnation ratios, activation temperatures, and activation times, in absence of an inert atmosphere. All developed carbons were characterized by using different analytical methods. Results showed that the rice husk carbonization at 600 oC by 1 hour followed by KOH-chemical activation using a mass impregnation ratio of 1:3 at 600 oC during 1 h, produced an activated carbon of microporous structure, with a high surface area of 1384.4 m2/g and a high total pore volume of 1.0854 cm3/g, these obtained morphological and textural properties were correlated with their exhibited CO2 adsorption capacity of 110.78 mg/g under atmospheric conditions, measured by the thermogravimetric method. The results indicate that KOH chemical activation under no inert gas conditions as an optimized synthesis route does seem to be a suitable modification technique that offered to prepare with economic feasibility a valuable activated carbon to be potentially used in CO2 capture technologies.

References

Acevedo, S., Giraldo, L., Moreno-Piraján, J.C. (2020). Adsorption of CO2 on activated carbons prepared by chemical activation with cupric nitrate. ACS omega 5, 10423-10432. https://doi.org/10.1021/acomega.0c00342

Alhamed, Y.A., Rather, S.U., El-Shazly, A.H., Zaman, S.F., Daous, M.A. and Al-Zahrani, A.A. (2015). Preparation of activated carbon from fly ash and its application for CO2 capture. Korean Journal of Chemical Engineering 32(4), 723-730. https://doi.org/10.1007/s11814-014-0273-2

Ayinla, R.T., Dennis, J.O., Zaid H.M., Sanusi Y.K., Usman F. and Adebayo L.L. (2019). A review of technical advances of recent palm bio-waste conversion to activated carbon for energy storage. Journal of Cleaner Production 229, 1427-1442. https://doi.org/10.1016/j.jclepro.2019.04.116

Azmi, A.A. and Aziz, M.A.A. (2019). Mesoporous adsorbent for CO2 capture application under mild condition: A review. Journal of Environmental Chemical Engineering 7, 103022. https://doi.org/10.1016/j.jece.2019.103022

Boujibar, O., Souikny, A., Ghamouss, F., Achak, O., Dahbi, M. and Chafik, T. (2018). CO2 capture using N-containing nanoporous activated carbon obtained from argan fruit shells. Journal of Environmental Chemical Engineering 6(2), 1995-2002. https://doi.org/10.1016/j.jece.2018.03.005

Budinova, T., Ekinci, E., Yardim, F., Grimm, A., Björnbom, E., Minkova, V. and Goranova, M. (2006). Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel Processing Technology 87, 899-905. https://doi.org/10.1016/j.fuproc.2006.06.005

Cheol-Min, Y. and Katsumi, K. (2002). Adsorption properties of iodine-doped activated carbon fiber. Journal of Colloid and Interface Science 246, 34-39. https://doi.org/10.1006/jcis.2001.8012

Chiang, Y.C., R.S. Juang, R.S. (2017). Surface modifications of carbonaceous materials for carbon dioxide adsorption: a review. Journal of Taiwan Institute of Chemical Engineers 71, 214-234. https://doi.org/10.1016/j.jtice.2016.12.014

Choi, S.W., Tang, J., Pol, V.G., Lee, K.B. (2019) Pollen-derived porous carbon by KOH activation: Effect of physicochemical structure on CO2 adsorption. Journal of CO2 Utilization 29, 146-155. https://doi.org/10.1016/j.jcou.2018.12.005

Danish, M. and Ahmad, T. (2018). A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews 87, 1-21. https://doi.org/10.1016/j.rser.2018.02.003

De Andrade, R.C., De Almeida, C.F,. Suegama, P.H., De Arruda, E.J., Arroyo, P.A. and De Carvalho, C.T. (2015). Buriti palm stem as a potential renewable source for activated carbon production. Environmental Technology & Innovation 3, 28-34. https://doi.org/10.1016/j.eti.2015.002.002

Gao, X., Yang, S., Hu, L., Cai, S., Wu, L., Kawi, S. (2022). Carbonaceous materials as adsorbents for CO2 capture: synthesis and modification. Carbon Capture Science and Technology 3, 100039. https://doi.org/10.1016/j.ccst.2022.100039.

Garcés-Polo, S.I., Villarroel-Rocha, J., Sapag, K., Korili, S.A. and Gil, A. (2018). Adsorption of CO2 on mixed oxides derived from hydrotalcites at several temperatures and high pressures. Chemical Engineering Journal 332, 24-32. https://doi.org/10.1016/j.cej.2017.09.056

Granados-Correa, F., Bonifacio-Martínez, J., Hernández-Mendoza, H. and Bulbulian, S. (2016). Capture of CO2 on γ-Al2O3 materials by solution-combustion and ball-milling

processes. Journal of the Air and Waste Management Association 66(7), 643-654. https://doi.org/10.1080/10962247.2016.1161673

Guo, A., Ban, Y., Yang, K. and Yang, W. (2018). Metal-organic framework-based mixed matrix membranes: Synergetic effect of adsorption and diffusion for CO2/CH4 separation. Journal of Membrane Science 562, 76-84. https://doi.org/10.1016/j.memsci.2018.05.032

Gutierrez-Bonilla, E., Granados-Correa F., Sánchez-Mendieta V. and Alberto, M.L.R. (2017). MgO-based adsorbents for CO2 adsorption: Influence of structural and textural properties on the CO2 adsorption performance. Journal of Environmental Sciences 57, 418-428. https://doi.org/10.1016/j.jes.2016.11.016

Hayashi, J., Kazehaya, A., Muroyama, K. and Watkinson, A.P. (2000). Preparation of activated carbon from lignin by chemical activation. Carbon 38, 1873-1878. https://doi.org/10.1016/S0008-6223(00)00027-0

Huang, G., Liu, Y., Wu, X. and Cai, J. (2019). Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance. New Carbon Materials 34, 247-257. https://doi.org/10.1016/S1872-5805(19)60014-4

Lee, M.S., Park, M., Kim, H.Y. and Park, S.J. (2016). Effects of microporosity and surface chemistry on separation performances of N-containing pitch-based activated carbons for CO2/N2 binary mixture. Scientific Reports 6(1), 23224. https://doi.org/10.1038/srep23224

Li, L. and Li, F. (2020). Preparation of carbonaceous adsorbent from straw and its adsorption performance for H2S removal. Journal of the Air & Waste Management Association. https://doi.org/10.1080/10962247.2020.1754306

Lillia, S., Bonalumi, D., Grande, C. and Manzolini, G. (2018). A comprehensive modeling of the hybrid temperature electric swing adsorption process for CO2 capture. International Journal of Greenhouse Gas Control 74, 155-173. https://doi.org/10.1016/j.ijggc.2018.04.012

Mansha, M., Javed S.H., Kazmi M. and Feroze. N. (2011). Study of rice husk ash as potential source of acid resistance calcium silicate. Advances in Chemical Engineering and Science 1, 147-153. https://doi.org/10.4236/aces.2011.13022

Mochizuki, T., Kubota, M., Matsuda, H. and D’Elia Camacho, L.F. (2016). Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation. Fuel Processing Technology 144, 164-169. https://doi.org/10.1016/j.fuproc.2015.12.012

Ogungbenro, A.E., Quang, D.V., Al-Ali, K.A., Vega, L.F. and Abu-Zahra, M.R.M. (2018). Physical synthesis and characterization of activated carbon from date seeds for CO2 capture. Journal of Environmental Chemical Engineering 6(4), 4245-4252. https://doi.org/10.1016/j.jece.2018.06.030

Ongunbenro, A.E., Quang, D.V., Al-Ali, K., Abu-Zahra M.R.M. (2017). Activated carbon from date seeds for CO2 capture applications. Energy Procedia 114, 2313-2321. https://doi.org/10.1016/j.egypro.2017.03.1370

Petrovic, B., Gorbounov, M., Soltani, S.M. (2021). Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods. Microporous and Mesoporous Materials 312, 110751. https://doi.org/10.1016/j.micromeso.2020.110751

Plaza, M.G., Pevida, C., Arias, B., Fermoso, J., Rubiera, F., Pis, J.J. (2009). A comparison of two methods for producing CO2 capture adsorbents. Energy Procedia 1, 1107-1113. https://doi.org/10.1016/j.egypro.2009.01.146

Rangabhashiyam, S., Anu, N. and Selvaraju, N. (2013). Sequestration of dye from textile industry wastewater using agricultural waste products as adsorbents. Journal of Environmental Chemical Engineering 1, 629-641. https://doi.org/10.1016/j.jece.2013.07.014

Rashidi, N.A., Yusup, S. and Loong, L.H. (2013). Kinetic studies on Carbon dioxide capture using activated carbon. Chemical Engineering Transactions 35, 361-365. https://doi.org/10.3303/CET1335060

Romero, F.M. and Gatica-Arias, A. (2019). CRISPR/Cas9: Development and application in rice breeding. Rice Science 26(5), 265-281. https://doi.org/10.1016/j.rsci.2019.08.001

Sagarpa-Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. (2017). Planeación agricola nacional 2017-2030. Available at: https://www.gob.mx/agricultura/acciones-y-programas/planeacion-agricola-nacional-2017-2030-126813. Accessed: November 16, 2020.

Sajjadi, S., Meknati A., Lima, E.C., Dotto, G.L., Mendoza-Castillo, D.I., Anastopoulos, I., Alakhras, F., Unuabonah, E.I., Singh, P. and Hosseini-Bandegharaei. (2019). A novel route for prepatration of chemically activated carbon from pistachio wood for highly efficient Pb(II) sorption. Journal of Environmental Management 236, 34-44. https://doi.org/10.1016/j.jenvman.2019.01.087

Salazar-Pinto, B., Zea-Linares, V., Villanueva-Salas, J. and Gonzales-Condori, E. (2021). Cd (II) and Pb (II) biosorption in aqueous solutions using agricultural residues of Phaseolus vulgaris L.: Optimization, kinetics, isotherms and desorption. Revista Mexicana De Ingeniería Química, 20(1), 305-322. https://doi.org/10.24275/rmiq/IA1864

Salgado-Delgado, A.M., Lozano-Pineda, E., Salgado-Delgado, R., Hernández-Uribe, J.P., Olarte-Paredes, A., Granados-Baeza, M.J. (2022). Chemical modification of rice (Oryza sativa) and potato (Solanum tuberosum) starches by silanization with trimethoxy(methyl)silane. Revista Mexicana de Ingeniería Química 21, 3 Alim2802, 1-12. https://doi.org/10.24275/rmiq/Alim2802

Sentorun-Shalaby, C., Ukak-Astarhoglu, M.G., Artok, I. and Sanci, C. (2006). Preparation and characterization of activated carbons by one-step steam pyrolysis/activation from apricot stones. Microporous Mesoporous Materials 88, 126-134. https://doi.org/10.1016/j.micromeso.2005.09.003

Serrano, T., Borrachero, M.V., Monzó, J.M. and Payà, J. (2012). Lightweight mortars with rice husk: Mix design and properties evaluation. DYNA (Colombia) 79(175), 128-136. Available at: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532012000500015&lng=en&tlng=es.

Singto, S., Supap, T., Idem, R., Tontiwachwuthikul, P. and Tantayanon, S. (2017). The effect of chemical structure of newly synthesized tertiary amines used for the post combustion capture process on carbon dioxide (CO2): Kinetics of CO2 absorption using the stopped-flow apparatus and regeneration, and heat input of CO2 regeneration. Energy Procedia 114, 852-859. https://doi.org/10.1016/j.egypro.2017.03.1227

Trujillo-Ramírez, D., Bustos-Vázquez, M.G., Rodríguez-Durán, L.V., Torres-de los Santos, R. (2022). Rice husk (Oryza sativa) as support in the immobilization of yeast cells. Revista Mexicana de Ingeniería Química 21, 1 Bio2558, 1-10. https://doi.org/10.24275/rmiq

Ullah, R., Ali H Salah Saad, M., Aparicio, S. and Atilhan, M. (2018). Adsorption equilibrium studies of CO2, CH4 and N2 on various modified zeolites at high pressures up to 200 bars. Microporous and Mesoporous Materials 262, 49-58. https://doi.org/10.1016/j.micromeso.2017.11.022

Wang, J. and Kaskel, S. (2012). KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry 22, 23710-23725. https://doi.org/0.1039/C2JM34066F

Wei, H., Deng, S., Hu, B., Chen, Z., Wang, B., Huang, J. and Yu, G. (2012). Granular bamboo-derived activated carbon for high CO2 adsorption: The dominant role of narrow micropores. ChemSusChem 5(12), 2354-2360. https://doi:10.1002/cssc.201200570 Xie, W., Li, H., Yang, M., He, L., Li, H., (2022). CO2 capture and utilization with solid waste. Green Chemical Engineering 3, 199-209. https://doi.org/10.1016/j.gce.2022.01.002

Yan, M., Li, Y., Chen, G., Zhang, L., Mao, Y. and Ma, C. (2017). A novel flue gas pre-treatment system of post-combustion CO2 capture in coal-fired power plant. Chemical Engineering Research and Design 128, 331-341. https://doi.org/10.1016/j.cherd.2017.10.005

Yousef, A.M., El-Maghlany, W.M., Eldrainy, Y.A. and Attia, A. (2018). New approach for biogas purification using cryogenic separation and distillation process for CO2 capture. Energy 156, 328-351. https://doi.org/10.1016/j.energy.2018.05.106

Yunes, S., Wommack, P., Still, M., Kenvin, J., Exley, J. (2013). Physical characterization of microporous materials using various adsorbates. Correlation between their micropore volume and their capacity to adsorb H2 and CO2. Applied Catalysis A: General 474, 280-256. https://doi.org/10.1016/j.apcata.2013.07.049

Zeng, H., Xinghong, Q., Dong, X., Yang, L. (2022). Porous adsorption materials for carbon dioxide capture in industrial flue Gas. Frontiers in Chemistry 10 art. 939701, 1-18. https://doi.org/10.3389/fchem.2022.939701

Published
2022-10-14
How to Cite
Gutiérrez-Bonilla, E., Granados-Correa, F., Roa-Morales, G., & Balderas-Hernández, P. (2022). CO2 capture on an optimally prepared highly microporous KOH-activated carbon from rice husk. Revista Mexicana De Ingeniería Química, 21(3), Mat2528. https://doi.org/10.24275/rmiq/Mat2528