Prebiotic properties of native and modified fructans (agavins) of Agave angustifolia Haw.

Keywords: Agave angustifolia Haw, fructans, acetylation, fermentation

Abstract

Agave fructans (agavins) are fructose polymers that possess β (2-1) and β (2-6) bonds. Thus, they cannot be hydrolyzed by digestive enzymes and are hence classified as indigestible oligosaccharides. These molecules have gained importance due to their various applications, one of which is their prebiotic capacity. They have also been used as wall material, encapsulating bioactive compounds and releasing them at specific sites. To determine the degree of polymerization of the native fructans, FTIR, 1H NMR, and MALDI–TOF-MS were used for characterization. They were subsequently modified via acetylation with acetic anhydride and tested as a carbon source with S. boulardii, which was used as a probiotic. This process helped to evaluate whether this modification affected the polysaccharide’s fermentability. The fructans used had a DP ranging from 4–10. Acetylation was performed with a change in functional groups (C = O) in the 1700–1750 cm-1 region, indicating that reaction was successful. Furthermore, yeast cell development with modified agave fructans (7.32 log10 CFU/mL and native agave fructans (7.09 log10 CFU/mL) indicated that the compound's fermentation was unaffected.

Author Biographies

C. Buitrago-Arias, Centro de Desarrollo de Productos Bioticos, Instituto Politecnico Nacional

PhD student

A. Londoño-Moreno, Institucion Universitaria Colegio Mayor de Antioquia
professional internship student
S.V. Ávila-Reyes, Centro de Desarrollo de Productos Bioticos, Instituto Politecnico Nacional

Statistical data analyst

https://www.scopus.com/authid/detail.uri?authorId=55974503100

M.L. Arenas-Ocampo, Centro de Desarrollo de Productos Bioticos, Instituto Politecnico Nacional

Contributed to the document format.

https://www.scopus.com/authid/detail.uri?authorId=6507202063

L. Alamilla Beltrán, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional

analytical equipments contributor

https://www.scopus.com/authid/detail.uri?authorId=11142258900

A.R. Jiménez Aparicio, Centro de Desarrollo de Productos Bioticos, Instituto Politecnico Nacional

Financial support

https://www.scopus.com/authid/detail.uri?authorId=6603471518

B.H. Camacho-Díaz, Instituto Politecnico Nacional, Centro de Desarrollo de Productos Bioticos

PhD proffesor

https://www.scopus.com/authid/detail.uri?authorId=36805614000

References

Alvarado-Jasso, G.M., Camacho-Díaz, B.H., Arenas-Ocampo, M.L., Jiménez-Ferrer, J.E., Mora-Escobedo, R. and Osorio-Díaz, P. (2020). Prebiotic effects of a mixture of agavins and green banana flour in a mouse model of obesity. Journal of Functional Foods, 64(May), 103685. https://doi.org/10.1016/j.jff.2019.103685
Apolinário, A.C., de Carvalho, E.M., de Lima Damasceno, B.P.G., da Silva, P.C.D., Converti, A., Pessoa, A. and da Silva, J.A. (2017). Extraction, isolation and characterization of inulin from Agave sisalana boles. Industrial Crops & Products 108, 355–362. https://doi.org/10.1016/j.indcrop.2017.06.045
Andrade, A.I.C., Bautista, C.R., Hernández, C.G., Cabrera, M.A.R., Ahumada, C.F., Chávez, E.G. and Lagunes, A.G. (2018). International Journal of Biological Macromolecules Physiometabolic effects of Agave salmiana fructans evaluated in Wistar rats. International Journal of Biological Macromolecules, 108, 1300–1309. https://doi.org/10.1016/j.ijbiomac.2017.11.043
Arrizon, J., Hernández-Moedano, A., Toksoy-Oner, E. and González-Avila, M. (2014). In vitro prebiotic activity of fructans with different fructosyl linkage for symbiotics elaboration. International Journal of Probiotics and Prebiotics 9(3), 69–76.
Arrizon, J., Morel, S., Gschaedler, A. and Monsan, P. (2010). Comparison of the water-soluble carbohydrate composition and fructan structures of Agave tequilana plants of different ages. Food Chemistry 122, 123–130. https://doi.org/10.1016/j.foodchem.2010.02.028
Ávila Reyes, S.V., Camacho-Díaz, B., Acosta García, M.C., Jiménez-Aparicio, A.R. and Hernández Sánchez, H. (2016). Effect of salt and sugar osmotic stress on the viability and morphology of Saccharomyces boulardii. International Journal of Environment, Agriculture and Biotechnology 1 (3), 593–602. http://dx.doi.org/10.22161/ijeab/1.3.43
Blohm, S. and Heinze, T. (2019). Studies About the Acylation of Starch in Dipolar Aprotic Solvents. Starch 71 (9–10), 1–8. https://doi.org/10.1002/star.201900053
Delgadillo, E., Corona, R.I., Toriz, G., Contreras, H.J., Sadeghifar, H., Baobing, W., Yang, G., Lucia, L.A. and Delgado, E. (2015). Coacervated liposoluble fructan-based host-guest microspheres as unique drug delivery materials. RSC Advances 5 (83), 67759–67766. https://doi.org/10.1039/C5RA10164F
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry 28, 350–356. https://doi.org/10.1021/ac60111a017
Espinosa-Andrews, H. and Urias-Silvas, J.E. (2012). Thermal properties of agave fructans (Agave tequilana Weber var. Azul). Carbohydrate Polymers 87 (4), 2671–2676. https://doi.org/10.1016/j.carbpol.2011.11.053
Fertah, M., Belfkira, A., Taourirte, M. and Brouillette, F. (2015). Controlled Release of Diclofenac by a New System Based on a Cellulosic Substrate and Calcium Alginate. Bio Resources 10 (1950), 5932–5948. https://doi.org/10.15376/biores.10.3.5932-5948
Franco-Robles, E. and López, M.G. (2015). Implication of fructans in health: Immunomodulatory and antioxidant mechanisms. Scientific World Journal. http://dx.doi.org/10.1155/2015/289267
Gomez, E., Tuohy, K.M., Gibson, G.R., Klinder, A. and Costabile, A. (2010). In vitro evaluation of the fermentation properties and potential prebiotic activity of Agave fructans. Journal of Applied Microbiology 108 (6), 2114–2121. https://doi.org/10.1111/j.1365-2672.2009.04617.x
Hatoum, R., Labrie, S. and Fliss, I. (2012). Antimicrobial and probiotic properties of yeasts : from fundamental to novel applications. Frontiers Microbiology 3 (421), 1–12. https://doi.org/10.3389/fmicb.2012.00421
Ignot-Gutiérrez, A., Ortiz-Basurto, R.I., García-Barradas, O., Díaz-Ramos, D.I. and Jiménez-Fernández, M. (2020). Physicochemical and functional properties of native and modified agave fructans by acylation. Carbohydrate Polymers 245, 116529. https://doi.org/10.1016/j.carbpol.2020.116529
Liu, J., Willför, S. and Xu, C. (2015). A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioactive Carbohydrates and Dietary Fibre 5 (1), 31–61. https://doi.org/10.1016/j.bcdf.2014.12.001
Lopez, M.G., Mancilla-Margalli, N.A. and Mendoza-Diaz, G. (2003). Molecular Structures of Fructans from Agave tequilana Weber var. azul. Journal Agriculture Food Chemistry 51, 7835–7840. https://doi.org/10.1021/jf030383v
Luo, M., Zhang, X., Wu, J. and Zhao, J. (2021). Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydrate Polymers 266(February), 118097. https://doi.org/10.1016/j.carbpol.2021.118097
Mancilla-Margalli, N.A. and Lopez, M.G. (2006). Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species. Journal Agriculture Food Chemistry 54, 7832–7839. https://doi.org/10.1021/jf060354v
Miles, A.A. and Misra S.S. (1938). The estimation of the bactericidal power of the blood. Epidemiology & Infection 38(6), 732–749. https://doi.org/10.1017/S002217240001158X
Miller, G.L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analalytical Chemistry 31, 426–428. https://doi.org/10.1021/ac60147a030
Miramontes-Corona, C., Escalante, A., Delgado, E., Corona González, R.I., Vázquez Torres, H. and Toriz, G. (2020). Hydrophobic agave fructans for sustained drug delivery to the human colon. Reactive and Functional Polymers 146 (104396), 1–8. https://doi.org/10.1016/j.reactfunctpolym.2019.104396
Mitterdorfer, G., Kneifel, W. and Viernstein, H. (2001). Utilization of prebiotic carbohydrates by yeasts of therapeutic relevance. Letters in Applied Microbiology 33(4), 251–255. https://doi.org/10.1046/j.1472-765X.2001.00991.x
Mizrahy, S. and Peer, D. (2012). Polysaccharides as building blocks for nanotherapeutics. Chemical Society Reviews 41 (7), 2623–2640. https://doi.org/10.1039/C1CS15239D
Nava-Cruz, N.Y., Medina-Morales, M.A., Martinez, J.L., Rodriguez, R. and Aguilar, C. N. (2015). Agave biotechnology: an overview. Critical Reviews in Biotechnology 35(4), 546–559. https://doi.org/10.3109/07388551.2014.923813
Nedovic, V., Kalusevic, A., Manojlovic, V., Petrovic, T. and Bugarski, B. (2013). Encapsulation systems in the food industry. In: Advances in food process engineering research and applications, Pp. 229–253. Boston, MA. https://doi.org/10.1007/978-1-4614-7906-2
Pintor-Jardines, A., Arjona-Román, J.L., Totosaus-Sánchez, A., Severiano-Pérez, P., González-González, L.R. and Escalona-Buendia, H.B. (2018). The influence of agave fructans on thermal properties of low-fat, and low-fat and sugar ice cream. LWT - Food Science and Technology 93, 679–685. https://doi.org/10.1016/j.lwt.2018.03.060
Rodríguez-González, F., Parra-Montes de Oca, M.A., Ávila-Reyes, S.V., Camacho-Díaz, B.H., Alamilla-Beltrán, L., Jiménez-Aparicio, A.R. and Arenas-Ocampo, M.L. (2019). A rheological study of chicory and agave tequilana fructans for use in foods. LWT - Food Science and Technology 115(January), 108137. https://doi.org/10.1016/j.lwt.2019.05.035
Romano, N., Araujo-Andrade, C., Lecot, J., Mobili, P. and Gómez-Zavaglia, A. (2018). Infrared spectroscopy as an alternative methodology to evaluate the effect of structural features on the physical-chemical properties of inulins. Food Research International 109(April), 223–231. https://doi.org/10.1016/j.foodres.2018.04.032
Santiago-García, P.A., Mellado-Mojica, E., León-Martínez, F.M., Dzul-Cauich, J.G., López, M.G. and García-Vieyra, M.I. (2021). Fructans (agavins) from Agave angustifolia and Agave potatorum as fat replacement in yogurt : Effects on physicochemical, rheological, and sensory properties. LWT - Food Science and Technology 140(January). https://doi.org/10.1016/j.lwt.2020.110846
Velázquez-Martínez, J.R., González-Cervantes, R.M., Hernández-Gallegos, M.A., Campos Mendiola, R., Jiménez-Aparicio, A. and Arenas-Ocampo, M.L. (2014). Prebiotic potential of Agave angustifolia Haw fructans with different degrees of polymerization. Molecules 19(8), 12660–12675. https://doi.org/10.3390/molecules190812660
Verma, D. K., Patel, A. R., Thakur, M., Singh, S., Tripathy, S., Srivastav, P. P.,... & Aguilar, C. N. (2021). A review of the Composition and Toxicology of Fructans, and Their Applications in Foods and Health. Journal of Food Composition and Analysis, 103884. https://doi.org/10.1016/j.jfca.2021.103884
Walz, M., Hirth, T. and Weber, A. (2018). Investigation of chemically modified inulin as encapsulation material for pharmaceutical substances by spray-drying. Colloids and Surfaces A: Physicochemical and Engineering Aspects 536, 47–52. https://doi.org/10.1016/j.colsurfa.2017.07.072.
Wu, X.Y. and Lee, P. I. (2000). Preparation and characterization of inulin ester microspheres as drug carriers. Journal of Applied Polymer Science 77(4), 833–840. https://doi.org/10.1002/(sici)1097-4628(20000725)77:4<833::aid-app17>3.0.co;2-4
Published
2021-10-03
How to Cite
Buitrago-Arias, C., Londoño-Moreno, A., Ávila-Reyes, S., Arenas-Ocampo, M., Alamilla Beltrán, L., Jiménez Aparicio, A., & Camacho-Díaz, B. (2021). Prebiotic properties of native and modified fructans (agavins) of Agave angustifolia Haw. Revista Mexicana De Ingeniería Química, 20(3), Poly2533. https://doi.org/10.24275/rmiq/Poly2533