Specific optical-based biosensor to rapid detection of Salmonella Typhimurium using FTIR: evaluation in natural orange juice, as an application in food products.

  • F.J. Gómez-Montaño Instituto Politécnico Nacional
  • A. Orduña-Díaz
  • M.C.G. Avelino-Flores
  • F. Avelino-Flores
  • C. Reyes-Betanzo
Keywords: biosensor, amorphous silicon, Salmonella, FTIR, orange juice

Abstract

Salmonella is one of the main pathogenic microorganisms present in foods, where natural orange juice is an example, although there are techniques that determine this bacterium, it is necessary to develop a device that allows Salmonella detection quickly, easily, and in real time. Therefore, using biosensors is an excellent option to solve this need. In this work, an optical biosensor of amorphous silicon thin films, a non-studied material in this area, was applied for the detection of Salmonella Typhimurium in natural orange juice, using Fourier transform infrared spectroscopy. The characteristic detection infrared band was identified at 1030 cm-1, related to the functional groups presence of the cell membrane and DNA bacterial, Salmonella concentrations in a range from 100 to 1000 CFU/mL were detected, and a SEM analysis was carried out. Biosensor did not show cross reactivity with enteropathogenic Escherichia coli.

References

Chadwick, S.J. (2008). Chapter 2 – Principles of allergy management. Managing the Allergic Patient 1st Edition. Elsevier.

Chanson-Rolle, A., Braesco, V., Chupin, J. & Bouillot, L. (2016). Nutritional composition of orange juice: a comparative study between French commercial and home-made juices. Food and Nutritional Sciences. 7:252-261. http://dx.doi.org/10.4236/fns.2016.74027

Dalebroux, Z.D., Edrozo, M.B., Pfuetzner, R.A., Ressl, S., Kulasekara, B.R., Blanc, M. & Miller, S.I. (2015). Delivery of cardiolipins to the Salmonella outer membrane is necessary for survival within host tissues and virulence. Cell Host & Microbe. 17(4):441-451. https://doi.org/10.1016/j.chom.2015.03.003

Di Nardo, F. & Anfossi, L. (2020). Chapter Eight – Commercial biosensors for detection of food additives, contaminants, and pathogens. Commercial Biosensors and Their Applications. Clinical Food and Beyond. Elsevier. 183-215. https://doi.org/10.1016/B978-0-12-818592-6.00008-6

Dragone, V., Sans, V., Rosnes, M.H., Kitson, P.J. & Cronin, L. (2013). 3D-printed devices for continuous-flow organic chemistry. Beilstein Journal of Organic Chemistry. 9:951-959. https://doi.org/10.3762/bjoc.9.109

Gómez-Montaño, F.J., Orduña-Díaz, A., Avelino-Flores, M.C.G., Avelino-Flores, F., Ramos-Collazo, F., Reyes-Betanzo, C. & López-Gayou, V. (2020). Detection of Salmonella enterica on silicon substrates biofunctionalized with anti-Salmonella IgG, analyzed by FTIR spectroscopy. Revista Mexicana de Ingeniería Química. 19(3):1175-1185. https://doi.org/10.24275/rmiq/Bio993

Gómez-Montaño, F.J., Orduña-Díaz, A., Avelino-Flores, M.C.G., Avelino-Flores, F., Reyes-Betanzo, C. & Rojas-López, M. (2021). Determination of Salmonella Typhimurium by Fourier transform infrared (FTIR) spectroscopy using a hydrogenated amorphous silicon carbide (a-SiC:H) thin film. Analytical Letters. DOI: 10.1080/00032719.2021.1881107

Guibal, E., Vincent T. & Navarro, R. (2014). Metal ion biosorption on chitosan for the synthesis of advanced materials. Journal of Materials Science. 49:5505-5518. https://doi.org/10.1007/s10853-014-8301-5

Heaney, R.P. & Graeff-Armas, L.A. (2018). Chapter 38 – Vitamin D role in the calcium and phosphorus economies. Vitamin D (4th Edition). Volume 1: Biochemistry, Physiology and Diagnostics. Academic Press. 663-678. https://doi.org/10.1016/B978-0-12-809965-0.00038-0

Huang, R., He, N. & Li, Z. (2018). Recent progresses in DNA nanostructure-based biosensors for detection of tumor markers. Biosensors and Bioelectronics. 109:27-34. https://doi.org/10.1016/j.bios.2018.02.053

Ji, Y., Yang, X., Ji, Z., Zhu, L., Ma, N., Chen, D., Jia, X., Tang, J. & Cao, Y. (2020). DFT-calculated IR spectrum amide I, II and III band contributions of N-methylacetamide fine components. ACS Omega. 5:9572-8578. DOI: 10.1021/acsomega.9b04421

Kennepohl, D., Farmer, S. & Reusch, W. (2020). 12:9 Infrared spectra of some common functional groups. LibreTexts: Chemistry. Recovered on April 14, 2021 from https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Map%3A_Organic_Chemistry_(McMurry)/12%3A_Structure_Determination_-_Mass_Spectrometry_and_Infrared_Spectroscopy/12.09%3A_Infrared_Spectra_of_Some_Common_Functional_Groups

Levinson, S.S. & Miller, J.L. (2002). Towards a better understanding of heterophile (and the like) antibody interference with modern immunoassays. Clinica Chimica Acta. 325(1-2):1-15. DOI: 10.1016/s0009-8981(02)00275-9

Liu, J., Jasim, I., Shen, Z., Zhao, L., Dwelk, M., Zhang, S. & Almasri, M. (2019). A microfluific based biosensor for rapid detection of Salmonella in food products. PLOS ONE. 14(5):e0216873. https://doi.org/10.1371/journal.pone.0216873

Muntean, C.M., Dina, N.E., Tabaran, A., Gherman, A.M.R., Falamas, A., Olar, L.E., Colobatiu, L.M. & Stefan, R. (2021). Identification of Salmonella serovars before and after ultraviolet light irradiation by Fourier transform infrared (FT-IR) spectroscopy and chemometrics. Analytical Letters. 54(1-2). https://doi.org/10.1080/00032719.2020.1731524

Naja, G., Bouvrette, P., Hrapovic, S. & Luong, J.H.T. (2007). Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies. The Analyst. 132:679-686. DOI: 10.1039/b701160a

Olsen, K.M., Gulliksen, M. & Christophersen, A.S. (1992). Metabolites of chlorpromazine and bromopheniramine may cause false-positive urine amphetamine results with monoclonal EMIT d.a.u. immunoassay. Clinical Chemistry. 38:611-612.

Paluszkiewicz, C., Piergies, N., Chaniecki, P., Rekas, M., Miszczyk, J. & Kwiatek, W.M. (2017). Differentiation of protein secondary structure in clear and opaque human lenses: AFM – IR studies. Journal of Pharmaceutical and Biomedical Analysis. 139:125-132. DOI: 10.1016/j.jpba.2017.03.001

Pasternack, R.M., Rivillon-Amy, S. & Chabal, Y.J. (2008). Attachment of 3-(aminopropyl)triethoxysilane on silicon oxide surfaces: dependence on solution temperature. Langmuir. 24(22):12963-12971. DOI: 10.1021/la8024827

Percival, S.L. & Williams, D.W. (2014). Chapter six – Escherichia coli. Microbiology of Waterborne Diseases. (2nd Edition). 89-117. https://doi.org/10.1016/B978-0-12-415846-7.00006-8

Shahbaz, H.M., Kim, J.U., Kim, S. & Park, J. (2018). Chapter 18 – The inactivation of pathogens in fruit juice: Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes. Fruit Juices. Academic Press. Editors: Rajauria, G. & Tiwari, B.K. 341-361. https://doi.org/10.1016/B978-0-12-802230-6.00018-7

Silva, N.F.D., Magalhaes, J.M.C.S., Barroso, M.F., Oliva-Teles, T., Freire, C. & Delerue-Matos, C. (2019). In situ formation of gold nanoparticles in polymer inclusión membrana: Application as platform in a label-free potentiometric immunosensor for Salmonella. Talanta. 194:134-142. https://doi.org/10.1016/j.talanta.2018.10.024

Vining, R.F., Compton, P. & McGinley, R. (1981). Steroid radioimmunoassay—effect of shortened incubation time on specificity. Clinical Chemistry. 27(6):910-913.

Wang, L., Huo, X., Qi, W., Xia, Z., Li, Y. & Lin, J. (2020). Rapid and sensitive detection of Salmonella Typhimurium using nickel nanowire bridge for electrochemical impedance amplification. Talanta. 211:120715. https://doi.org/10.1016/j.talanta.2020.120715

Zarnowiec, P., Lechowicz, L., Czerwonka, G. & Kaca, W. (2015). Fourier transform infrared spectroscopy (FTIR) as a tool for the identification and differentiation of pathogenic bacteria. Current Medicinal Chemistry. 22(14):1710-1718. DOI: 10.2174/0929867322666150311152800
Published
2021-09-13
How to Cite
Gómez-Montaño, F., Orduña-Díaz, A., Avelino-Flores, M., Avelino-Flores, F., & Reyes-Betanzo, C. (2021). Specific optical-based biosensor to rapid detection of Salmonella Typhimurium using FTIR: evaluation in natural orange juice, as an application in food products. Revista Mexicana De Ingeniería Química, 20(3), Bio2538. https://doi.org/10.24275/rmiq/Bio2538

Most read articles by the same author(s)