Rice husk (Oryza sativa) as support in the immobilization of yeast cells

  • D. Trujillo-Ramírez
  • M.G. Bustos-Vázquez Doctora
  • L.V. Rodríguez-Durán
  • R. Torres-de los Santos
Keywords: rice husk, cell immobilization, yeast cells, acid and alkaline pretreatment.


The present study aims to evaluate the rice husk (Oriza sativa; RH), using H2SO4 and NaOH (concentration of 2% v/v, solid to liquid ratio 1:6 and temperature and reaction time of 121 °C and 40 min, respectively, for both treatments) as pretreatment to determine if this material can be used as support in the immobilization of Saccharomyces cerevisiae cells. Fermentation kinetics were evaluated in cell buffer solution solid to liquid ratio 1:20 and sampling was performed every 8 h for 32 h. The highest cellular retention of RH pretreated with H2SO4 (PretAcid) was at 24 h (98.35 mg g–1), while RH pretreated with NaOH (PretAlka), was at 16 h (63.21 mg g–1), meanwhile, the treatment that was not subjected to chemical treatment (Control), was at 24 h (8.56 mg g–1). On the other hand, the maximum support efficiency was reached at 36 h in the order of 44.99, 23.25 and 23.43 % for PretAcid, PretAlka and Control, respectively. These results indicate that due to the structural modification that RH underwent during chemical pretreatments, may be an ideal substrate for the adsorption of yeast cells.


Anderson, R.A., Conway, H.F. and Peplinski, A.J. (1970). Gelatinization of corn grits by roll cooking, extrusion cooking and steaming. Starch 22, 130–135. https://doi.org/10.1002/star.19700220408

AOAC. (2010). Official Methods of Analysis, 18th ed. Association of Official Analytical Chemistry. Washington DC. USA.

Baruah, J., Nath, B.K., Sharma, R., Kumar, S., Deka, R.C., Baruah, D.C. and Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research 141, 1-19. https://doi.org/10.3389/fenrg.2018.00141

Behera, S., R. Arora, N. Nandhagopal, and S. Kumar. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews 36, 91–106. https://doi.org/10.1016/j.rser.2014.04.047

Bustos, G., Moldes, A.B., Cruz, J.M. and Domínguez, J.M. (2004). Production of fermentable media from vine‐trimming wastes and bioconversion into lactic acid by Lactobacillus pentosus. Journal of the Science of Food and Agriculture 84, 2105–2112. https://doi.org/10.1002/jsfa.1922

Brousse, M.M., Nieto, A., Linares, A., and Vergara, M. (2012). Cinética de adsorción de agua en purés deshidratados de mandioca (Manihot esculenta Crantz). Revista Venezolana de Ciencia y Tecnología de Alimentos 3(1), 080-096.

Camesasca, L., Ramírez, M.B., Guigou, M., Ferrari, M.D. and Lareo, C. (2015). Evaluation of dilute acid and alkaline pretreatments, enzymatic hydrolysis and fermentation of napiergrass for fuel ethanol production. Biomass & Bioenergy 74, 193-201. https://doi.org/10.1016/j.biombioe.2015.01.017

Cardoso, F.F., Ascheri, D.P.R., and Carvalho, C.W.P.D. (2014). Propiedades reológicas y de adsorción de agua de harina extrudida de arroz y bagazo de cebada. Revista Ceres 61(3), 313-322. https://doi.org/10.1590/S0034-737X2014000300003

Chen, L., Zhang, H., Li, J., Lu, M., Guo, X. and Han, L. (2015). A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover. Bioresource Technology 177, 8–16. https://doi.org/10.1016/j.biortech.2014.11.060

Clementz, A.L., Aimaretti, N.R., Manuale, D. Codevilla, A. and Yori, J.C. (2015). Optimization of ethanol fermentation from discarded carrots using immobilized Saccharomyces cerevisiae. International Journal of Energy and Environmental Engineering 6, 129–135. https://doi.org/10.1007/s40095-014-0157-6

Dagnino, E.P., Chamorro, E.R., Romano, S.D., Felissia, F.E. and Area, M.C. (2013). Optimization of the acid pretreatment of rice hulls to obtain fermentable sugars for bioethanol production. Industrial Crops and Products 42(1), 363–368. https://doi.org/10.1016/j.indcrop.2012.06.019

Djordjević, V., Willaert, R., Gibson, B. and Nedović, V. (2017). Immobilized Yeast Cells and Secondary Metabolites. In: Fungal Metabolites, (J.M. Mérillon and K. Ramawat, eds.), Pp. 599–638. Springer, Germany. https://doi.org/10.1007/978-3-319-19456-1_33-1

Doria Herrera, G. M., Valencia Uribe, G. C., Hormaza Anaguano, A., and Gallego Suárez, D. (2016). Estudio preliminar de la cascarilla de arroz modificada y su efecto en la adsorción de Cr (VI) en solución. Producción+ Limpia 11(1), 103-116. ID: 10670/1.dfsgna

Ekielski, A., Żelaziński, T., Siwek, A., Sharma, V., and Mishra, P.K. (2020). Formulation and characterization of corn grits-propylene glycol extrudates. Materials Today: Proceedings 21, 1772-1780. https://doi.org/10.1016/j.matpr.2020.01.230

Encalada Paredes, M.E. (2011). Detección de hongos en la cama avícola, causantes de micosis en los pollos de ceba. REDVET. Revista Electrónica de Veterinaria 12(6), 1-21.

Geddes, C.C., Peterson, J.J., Roslander, C., Zacchi, G., Mullinnix, M.T., Shanmugam, K.T., and Ingram, L.O. (2010). Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases. Bioresource technology 101(6), 1851-1857. https://doi.org/10.1016/j.biortech.2009.09.070

Goodman, B.A. (2020). Utilization of waste straw and husks from rice production: A review. Journal of Bioresources and Bioproducts 5(3), 143–162. https://doi.org/10.1016/j.jobab.2020.07.001

Hendriks, A.T.W.M. and Zeeman, G. (2009). Review: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology 100(1), 10–18. https://doi.org/10.1016/j.biortech.2008.05.027

Kamari, S., and Ghorbani, F. (2020). Extraction of highly pure silica from rice husk as an agricultural by-product and its application in the production of magnetic mesoporous silica MCM–41. Biomass Conversion and Biorefinery 1-9. https://doi.org/10.1007/s13399-020-00637-w

Kim, S.B., Lee, S.J., Lee, J.H., Jung, Y.R., Thapa, L.P., Kim, J.S., Um, Y., Park, Ch. and Kim, S.W. (2013). Pretreatment of rice straw with combined process using dilute sulfuric acid and aqueous ammonia. Biotechnology for Biofuels 6(1), 109. DOI:10.1186/1754-6834-6-109.

Kucharska, K., Rybarczyk, P., Hołowacz, I., Łukajtis, R., Glinka, M. and Kamiński, M. (2018). Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes. Molecules 23(11), 2937. https://doi.org/10.3390/molecules23112937

Kumar, P.S., Ramakrishnan, K., Kirupa, S.D. and Sivanesan, S. (2010). Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk. Brazilian Journal of Chemical Engineering 27(2), 347–355. https://doi.org/10.1590/S0104-66322010000200013.

Kunthiphun, S., Phumikhet, P., Tolieng, V., Tanasupawat, S. and Akaracharanya, A. (2017). Waste cassava tuber fibers as an immobilization carrier of Saccharomyces cerevisiae for ethanol production. BioResources 12(1), 157–167. https://doi.org/10.15376/biores.12.1.157-167

Li, P., Cai, D., Luo, Z., Qin, P., Chen, C., Wang, Y., Zhang, Ch., Wang, Z. and Tan, T. (2016). Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production. Bioresource Technology 206, 86–92. DOI: 10.1016/j.biortech.2016.01.077

Liberalesso, T., Tassi, R., Ceconi, D.E., Allasia, D.G., and Arboit, N.K.S. (2021). Effect of rice husk addition on the physicochemical and hydrological properties on green roof substrates under subtropical climate conditions. Journal of Cleaner Production 315, 128133. https://doi.org/10.1016/j.jclepro.2021.128133

Llanos-Páez, O., Ríos-Navarro, A., Jaramillo-Páez, C.A., y Rodríguez-Herrera, L.F. (2016). La cascarilla de arroz como una alternativa en procesos de descontaminación. Producción + Limpia 11(2), 150-160. https://doi.org/10.22507/pml.v11n2a12

López-Ayala, J.C., Cazorla-Vinueza, X.R., Zambrano-Cárdenas, G.O., y Chancusig-Marcillo, W.F. (2021). La economía circular de los desechos generados por la gramínea de arroz frente al efecto ambiental. Polo del conocimiento 56(6), 874-900. DOI: 10.23857/pc.v6i3.2411

López-Menchero, J.R., Ogawaa, M., Mauricio, J.C., Moreno, J. and Moreno-García, J. (2021). Effect of calcium alginate coating on the cell retention and fermentation of a fungus-yeast immobilization system. LWT–Food Science and Technology 144, 111250. https://doi.org/10.1016/j.lwt.2021.111250

Maliki, I.M., Abdul-Manas, N.H., Ahmad, S.A., Fuse, H., Ramírez-Moreno, N. and Zulkharnain, A. (2021). Removal of heterocyclic compound carbazole using cell immobilization of Thalassospira profundimaris strain M02. Revista Mexicana de Ingeniería Química 20(1), 413–422. https://doi.org/10.24275/rmiq/Bio1808

Manzoor, Q., Sajid, A., Hussain, T., Iqbal, M., Abbas, M. and Nisar, J. (2019). Efficiency of immobilized Zea mays biomass for the adsorption of chromium from simulated media and tannery wastewater. Journal of Materials Research and Technology 8(1), 75–86. https://doi.org/10.1016/j.jmrt.2017.05.016

Marques, B., Almeida, J., Tadeu, A., António, J., Santos, M. I., de Brito, J. and Oliveira, M. (2021). Rice husk cement-based composites for acoustic barriers and thermal insulating layers. Journal of Building Engineering 39, 102297. https://doi.org/10.1016/j.jobe.2021.102297

Martínez-Trujillo, M.A., and García-Rivero, M. (2012). Revisión: Aplicaciones ambientales de microorganismos inmovilizados. Revista Mexicana de Ingeniería Química 11(1), 55-73.

Mejías-Brizuela, N., Orozco-Guillén, E., and Galáan-Hernández, N. (2016). Aprovechamiento de los residuos agroindustriales y su contribución al desarrollo sostenible de México. Revista de Ciencias Ambientales y Recursos Naturales 2(6), 27-41.

Mirmohamadsadeghi, S., and Karimi, K. (2020). Recovery of silica from rice straw and husk. In: Current Developments in Biotechnology and Bioengineering, (S. Varjani, A. Pandey, E. Gnansounou, S. Kumar Khanal and S. Raveendran, eds.), Pp. 411–433. Elsevier Science, Netherlands. https://doi.org/10.1016/B978-0-444-64321-6.00021-5

Mussatto, S.I., Aguilar, C.N., Rodríguez, L.R. and Teixeira, J.A. (2009a). Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides. Carbohydrate Research 344(6), 795–800. https://doi.org/10.1016/j.carres.2009.01.025

Mussatto, S.I., Aguilar, C.N., Rodríguez, L.R. and Teixeira, J.A. (2009b). Fructooligosaccharides and β-fructofuranosidase production by Aspergillus japonicus immobilized on lignocellulosic materials. Journal of Molecular Catalysis B: Enzymatic 59(1–3), 76–81. https://doi.org/10.1016/j.molcatb.2009.01.005.

Nuanpeng, S., Thanonkeo, S., Klanrit, P. and Thanonkeo, P. (2018). Ethanol production from sweet sorghum by Saccharomyces cerevisiae DBKKUY-53 immobilized on alginate-loofah matrices. Brazilian Journal of Microbiology 49(1), 140–150. DOI: 10.1016/j.bjm.2017.12.011

Orzua, M.C., Mussatto, S.I., Contreras-Esquivel, J.C., Rodríguez, R., Garza, H.D., Teixeira, J.A. and Aguilar, C.N. (2009). Exploitation of agro industrial wastes as immobilization carrier for solid-state fermentation. Industrial Crops and Products 30(1), 24–27. https://doi.org/10.1016/j.indcrop.2009.02.001

Orrabalis, C.J., Ledezma, A.R., Villalba, R., and Martinez Garcia, R. (2019). Cuantificación de la resistencia mecánica de morteros de cemento al añadir cenizas de cascara de arroz ricas en nanopartículas de sílice. Avances en Ciencias e Ingeniería 10 (2), 1-9

Piñeros-Guerrero, N., Piñeros-Castro, Y., and Ortega-Toro, R. (2020). Active biodegradable films based on thermoplastic starch and poly (e-caprolactone): technological application of antioxidant extracts from rice husk. Revista Mexicana de Ingeniería Química 19(3), 1095-1101. https://doi.org/10.24275/rmiq/Poli898

Pode, R. (2016). Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews 53, 1468–1485. https://doi.org/10.1016/j.rser.2015.09.051

Prada, A. y Cortés, C.E. (2010). La descomposición térmica de la cascarilla de arroz: Una alternativa de aprovechamiento integral. Orinoquia 14(1), 155-170

Rezende, C.A., de Lima, M.A., Maziero, P., de Azevedo, E.R., Garcia, W. and Polikarpov, I. (2011). Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels 4, 54. https://doi.org/10.1186/1754-6834-4-54

Rodríguez, O.V., y Hansen, H. (2007). Obtención de dextrano y fructosa, utilizando residuos agroindustriales con la cepa Leuconostoc mesenteroides NRRL B512-F. Revista Escuela de Ingeniería de Antioquia 7, 159-172.

Rodríguez, A.C., Campos Rosario, A.M. and Pérez Flores, A. (2019). Obtención y caracterización de materiales adsorbentes a partir de cascarilla de arroz. Revista Mutis 9 (1), 29-39. DOI: 10.21789/22561498.1515

Sanchez-Herrera, D., Sanchez, O., Houbron, E., Rustrian, R., Toledano, T., Tapia-Tussell, R. and Alzate-Gaviria, L. (2018). Biomethane potential from sugarcane straw in Veracruz, Mexico: combined liquid hot water pretreatment and enzymatic or biological hydrolysis. Revista Mexicana de Ingeniería Química 17 (3), 1105–1120. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n3/SanchezH

Saucedo-Luna, J., Castro-Montoya, A.J., Rico, J.L. and Campos-García, J. (2010). Optimization of acid hydrolysis of bagasse from Agave tequilana Weber. Revista Mexicana de Ingeniería Química 9 (1), 91–97. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-27382010000100011&lng=es&nrm=iso

Shahabazuddin, Md., Sarat Chandra, T., Meena, S., Sukumaran, R.K., Shetty, N.P. and Mudliar, S.N. (2018). Thermal assisted alkaline pretreatment of rice husk for enhanced biomass deconstruction and enzymatic saccharification: Physico-chemical and structural characterization. Bioresource Technology 263, 199-206. DOI: 10.1016/j.biortech.2018.04.027

Valverde G. A., Sarria, L.B. y Monteagudo, Y.L. (2007). Análisis comparativo de las características fisicoquímicas de la cascarilla de arroz. Scientia et Technica 37(1), 12–31. https://doi.org/10.22517/23447214.4055

Villada Villada, Y. A., Hormaza Anaguano, A. D. S., and Casis, N. (2014). Uso de la cascarilla de arroz para la remoción de azul de metileno en columnas de lecho empacado. Tecno Lógicas 17 (33), 43-54. Retrieved November 05, 2021, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-77992014000200005&lng=en&tlng=es.

How to Cite
Trujillo-Ramírez, D., Bustos-Vázquez, M., Rodríguez-Durán, L., & Torres-de los Santos, R. (2021). Rice husk (Oryza sativa) as support in the immobilization of yeast cells. Revista Mexicana De Ingeniería Química, 21(1), Bio2558. https://doi.org/10.24275/rmiq/Bio2558