Effects of different nitrogen sources on methane production, free ammonium and hydrogen sulfide in anaerobic digestion of cheese whey with cow manure

  • S. Cisneros de la Cueva
  • N. Balagurusamy
  • S.B. Pérez-Vega
  • I. Pérez-Reyes
  • J.A. Vázquez-Castillo
  • F.J. Zavala Díaz de la Serna
  • I. Salmerón-Ochoa
Keywords: Anaerobic digestion, free ammonium, hydrogen sulfide, methane, nitrogen sources


In this present study, the effect of different nitrogen sources in the anaerobic digestion of cheese whey on methane production, free ammonia, and hydrogen sulfide. The results showed that supplementation with urea at a concentration of 1000 mg L-1 the maximum methane production values of 513.95 ± 2.12 mL CH4 g VS-1 were obtained. On the other hand, supplementation with ammonium nitrate at a concentration of 1000 mg L-1 gave a value of methane of 415.93 ± 5.44 mL CH4 g VS-1 and exhibited the lowest values hydrogen sulfide of 267.69 ± 0.37 ppm and free ammonium of 49.18 ± 9.66 mg L-1. Supplementation with ammonium sulfate at a concentration of 2000 mg L-1, methane values of 466.64 ± 9.93 mL CH4 g VS-1 and hydrogen sulfide of 2768.43 ± 20.52 ppm were obtained. The findings from this research contributed to elucidate the role of supplementation with urea, ammonium sulfate, and ammonium nitrate in the anaerobic digestion process, which could help to solve some problems related to the reduction of methane production in cheese whey fed biodigesters.


Ahmad, T., and Zhang, D. (2020). A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Reports 6, 1973–1991. https://doi.org/10.1016/j.egyr.2020.07.020

Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., and Van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology 59, 927–934. https://doi.org/10.2166/wst.2009.040

Antonelli, J., Lindino, C.A., de Azevedo, J.C.R., de Souza, S.N.M., Cremonez, P.A., and Rossi, E. (2016). Biogas production by the anaerobic digestion of whey. Revista de Ciências Agrárias 39, 463–468. https://doi.org/10.19084/RCA15087

APHA. (2012). Standard Methods for the Examination of Water and Wastewater, 22th. American Public Health Association.New York

Barton, L.L., and Fauque, G.D. (2009). Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Advances in Applied Microbiology 68, 41–98. https://doi.org/10.1016/S0065-2164(09)01202-7

Bhattacharya, S.K., Uberoi, V., and Dronamraju, M.M. (1996). Interaction between acetate fed sulfate reducers and methanogens. Water Research 30, 2239–2246. https://doi.org/10.1016/0043-1354(95)00238-3

Boncz, M.A., Formagini, E.L., Santos, L.D.S., Marques, R.D., and Paulo, P.L. (2012). Application of urea dosing for alkalinity supply during anaerobic digestion of vinasse. Water Science and Technology 66, 2453–2460. https://doi.org/10.2166/wst.2012.476

Bonk, F., Popp, D., Weinrich, S., Sträuber, H., Kleinsteuber, S., Harms, H., and Centler, F. (2018). Ammonia inhibition of anaerobic volatile fatty acid degrading microbial communities. Frontiers in Microbiology 9, 1–13. https://doi.org/10.3389/fmicb.2018.02921

Cadena, R.O., Rivera, E.M., and Herrera, G. (2010). Automatic volumetric gas flow meter for monitoring biogas production from laboratory-scale anaerobic digester. Sensors and Actuators, B: Chemical 147, 10–14. https://doi.org/10.1016/j.snb.2010.03.053

Cárdenas, K.N., Fajardo, M.C., Schettino, B.S., Meraz, M.A., and Castilla, P. (2020). Acidogenesis/methanogenesis from acid cheese whey in hybrid-UASB reactors. Revista Mexicana de Ingeniería Química 19, 17–27. https://doi.org/10.24275/rmiq/IA1420.

Carlini, M., Castellucci, S., and Moneti, M. (2015). Biogas production from poultry manure and cheese whey wastewater under mesophilic conditions in batch reactor. Energy Procedia 82, 811–818. https://doi.org/10.1016/j.egypro.2015.11.817

Chatzipaschali, A.A., and Stamatis, A.G. (2012). Biotechnological utilization with a focus on anaerobic treatment of cheese whey: Current status and prospects. Energies 5, 3492–3525. https://doi.org/10.3390/en5093492

Cisneros, S., Veana, F., Arjona, M.A., Álvarez, C.L., and Pérez, S.B. (2021). Optimization of variables from the anaerobic digestion process of cheese whey in biogas production. Revista Internacional de Contaminación Ambiental 37, 307–18. https://doi.org/10.20937/RICA.53879.

Comino, E., Rosso, M., and Riggio, V. (2009). Development of a pilot scale anaerobic digester for biogas production from cow manure and whey mix. Bioresource Technology 100, 5072–5078. https://doi.org/10.1016/j.biortech.2009.05.059

Comino, E., Riggio, V.A., and Rosso, M. (2012). Biogas production by anaerobic co-digestion of cattle slurry and cheese whey. Bioresource Technology 114, 46–53. https://doi.org/10.1016/j.biortech.2012.02.090

Dannesboe, C., Hansen, J.B., and Johannsen, I. (2019). Removal of sulfur contaminants from biogas to enable direct catalytic methanation. Biomass Conversion and Biorefinery 9, 1–12. https://doi.org/10.1007/s13399-019-00570-7

Demirel, B., and Scherer, P. (2008). Production of methane from sugar beet silage without manure addition by a single-stage anaerobic digestion process. Biomass and Bioenergy 32, 203–209. https://doi.org/10.1016/j.biombioe.2007.09.011

Deublein, D., and Steinhauser, A. (2008). Process parameters. Biogas from waste and renewable resources (Deublein, D., and Steinhauser, A. eds.), 125–127. Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim, Germany https://doi.org/10.1002/9783527621705

Dumont, E. (2015). H2S removal from biogas using bioreactors: a review. International Journal of Energy and Environment 6, 479–498.

El-Mashad, H.M., and Zhang, R. (2010). Biogas production from co-digestion of dairy manure and food waste. Bioresource Technology 101, 4021–4028. https://doi.org/10.1016/j.biortech.2010.01.027

Elasri, O., and El amin Afilal, M. (2016). Potential for biogas production from the anaerobic digestion of chicken droppings in Morocco. International Journal of Recycling of Organic Waste in Agriculture 5, 195–204. https://doi.org/10.1007/s40093-016-0128-4

Ergüder, T., Tezel, U., Güven, E., and Demirer, G. (2001). Anaerobic biotransformation and methane generation potential of cheese whey in batch and UASB reactors. Waste Management 21, 643–650. https://doi.org/10.1016/S0956-053X(00)00114-8

Escalante, H., Castro, L., Amaya, M.P., Jaimes, L., and Jaimes, J. (2018). Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Management 71, 711–718. https://doi.org/10.1016/j.wasman.2017.09.026

Estevez, M.M., Linjordet, R., and Morken, J. (2012). Effects of steam explosion and co-digestion in the methane production from Salix by mesophilic batch assays. Bioresource Technology 104, 749–756. https://doi.org/10.1016/j.biortech.2011.11.017

Fernández, C., Martínez, E.J., Morán, A., and Gómez, X. (2016). Biological treatments of cheese whey for biogas and hydrogen production. Review. Revista Investigación, Optimización y Nuevos procesos en Ingeniería 29, 47–62. https://doi.org/10.18273/revion.v29n1-2016004

Fiore, S., Ruffino, B., Campo, G., Roati, C., and Zanetti, M.C. (2016). Scale-up evaluation of the anaerobic digestion of food-processing industrial wastes. Renewable Energy 96, 949–959. https://doi.org/10.1016/j.renene.2016.05.049

Fricke, K., Santen, H., Wallmann, R., Hüttner, A., and Dichtl, N. (2007). Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Management 27, 30–43. https://doi.org/10.1016/j.wasman.2006.03.003

Ghyselbrecht, K., Monballiu, A., Somers, M.H., Sigurnjak, I., Meers, E., Appels, L., and Meesschaert, B. (2019b). The fate of nitrite and nitrate during anaerobic digestion. Environmental Technology 40, 1013–1026. https://doi.org/10.1080/09593330.2017.1415380

González, G., Pérez, V. Orozco, J. Aguirre, J.F. Beristain, R., and Buendía, L. (2019). Kinetics and microbial structure of nitrogen cycle bacteria contained in the rhizosphere of natural wetland polluted with chromium. Revista Mexicana de Ingeniería Química 19, 543–53. https://doi.org/10.24275/rmiq/IA660.

Guiot, S.R., and Frigon, J.C. (2012). Microbial technologies in advanced biofuels production. Microbial Technologies in Advanced Biofuels Production (P.C. Hallenbeck, eds.), 143–161. Springer, US. https://doi.org/10.1007/978-1-4614-1208-3

He, Q., He, Z., Joyner, D.C., Joachimiak, M., Price, M.N., Yang, Z.K., Yen, H.C.B., Hemme, C.L., Chen, W., Fields, M.M., Stahl, D.A., Keasling, J.D., Keller, M., Arkin, A.P., Hazen, T.C., Wall, J.D., and Zhou, J. (2010). Impact of elevated nitrate on sulfate-reducing bacteria: a comparative study of Desulfovibrio vulgaris. ISME Journal 4, 1386–1397. https://doi.org/10.1038/ismej.2010.59

Hedderich, R., Klimmek, O., Kröger, A., Dirmeier, R., Keller, M., and Stetter, K.O. (1998). Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiology Reviews 22, 353–381. https://doi.org/10.1016/S0168-6445(98)00035-7

Hernández, V. C., Benítez, G., Fajardo, M. C., Rojas, U., and Salazar, M. L. (2021). Analysis of the transient inhibited steady-state in anaerobic digestion of a semisolid from pretreated bovine slaughterhouse wastewater. Revista Mexicana de Ingeniera Quimica, 20, 541–553. https://doi.org/10.24275/rmiq/IA2012

Igarashi, K., and Kuwabara, T. (2016). Hydrogen-sulfide-free methane production by fermenter-methanogen syntrophy using dacite pumice under aerobic gas phase. Energy and Fuels 30, 4945–4950. https://doi.org/10.1021/acs.energyfuels.6b00494

Jiang, Y., Heaven, S., and Banks, C.J. (2012). Strategies for stable anaerobic digestion of vegetable waste. Renewable Energy 44, 206–214. https://doi.org/10.1016/j.renene.2012.01.012

Karhadkar, P.P., Audic, J.M., Faup, G.M., and Khanna, P. (1987). Sulfide and sulfate inhibition of methanogenesis. Water Research 21, 1061–1066. https://doi.org/10.1016/0043-1354(87)90027-3

Kim, M.J., and Kim, S.H. (2017). Minimization of diauxic growth lag-phase for high-efficiency biogas production. Journal of Environmental Management 187, 456–463. https://doi.org/10.1016/j.jenvman.2016.11.002

Kitazaki, S. (2014). Hydrogen sulfide generation suppression by nitrate addition application to solid waste landfill site. American Journal of Environmental Protection 3, 267–274. https://doi.org/10.11648/j.ajep.20140305.20

Koster, I.W., and Lettinga, G. (1988). Anaerobic digestion at extreme ammonia concentrations. Biological Wastes 25, 51–59. https://doi.org/10.1016/0269-7483(88)90127-9

Krakat, N., Anjum, R., Dietz, D., and Demirel, B. (2017). Methods of ammonia removal in anaerobic digestion: A review. Water Science and Technology 76, 1925–1938. https://doi.org/10.2166/wst.2017.406

Li, Z., and Peng, Y. (2020). Biphasic effect of nitrate on anaerobic ammonium oxidation (anammox) and related kinetic modeling. Chemosphere 238, 1–36. https://doi.org/10.1016/j.chemosphere.2019.124654

Lin, Y.H., and Gu, Y.J. (2020). Denitrification kinetics of nitrate by a heterotrophic culture in batch and fixed-biofilm reactors. Processes 8, 2–20 https://doi.org/10.3390/PR8050547

Logan, M., Safi, M., Lens, P., and Visvanathan, C. (2019). Investigating the performance of internet of things based anaerobic digestion of food waste. Process Safety and Environmental Protection 127, 277–287. https://doi.org/10.1016/j.psep.2019.05.025

Lv, Z., Jiang, J., Liebetrau, J., Richnow, H.H., Fischer, A., Ács, N., and Nikolausz, M. (2018). Ammonium chloride vs urea-induced ammonia inhibition of the biogas process assessed by stable isotope analysis. Chemical Engineering and Technology 41, 671–679. https://doi.org/10.1002/ceat.201700482

Ma, X., Jiang, T., Chang, J., Tang, Q., Luo, T., and Cui, Z. (2019). Effect of substrate to inoculum ratio on biogas production and microbial community during hemi-solid-state Batch anaerobic co-digestion of rape straw and dairy manure. Applied Biochemistry and Biotechnology 189, 884–902. https://doi.org/10.1007/s12010-019-03035-9

Mainardis, M. (2017). Characterization and BMP tests of liquid substrates for high-rate anaerobic digestion. Chemical and Biochemical Engineering Quarterly 31, 509–518. https://doi.org/10.15255/CABEQ.2017.1083

Marchioro, V., Steinmetz, R.L.R., do Amaral, A.C., Gaspareto, T.C., Treichel, H., and Kunz, A. (2018). Poultry litter solid state anaerobic digestion: effect of digestate recirculation intervals and substrate/inoculum ratios on process efficiency. Frontiers in Sustainable Food Systems 2, 1–10. https://doi.org/10.3389/fsufs.2018.00046

Marietou, A. (2016). Nitrate reduction in sulfate-reducing bacteria. FEMS Microbiology Letters 363, 1–4. https://doi.org/10.1093/femsle/fnw155

Marquardt, D.W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 11, 431–441. http://www.jstor.org/stable/2098941

Mazorra, M.Á., and Moreno, J.M. (2019). Properties and options for the valorization of whey from the artisanal cheese industry. CienciaUAT 14, 133–144. https://doi.org/10.29059/cienciauat.v14i1.1134

McCartney, D.M., and Oleszkiewicz, J.A. (1991). Sulfide inhibition of anaerobic degradation of lactate and acetate. Water Research 25, 203–209. https://doi.org/10.1016/0043-1354(91)90030-T

Monroy, S.G., Jiménez A., Gutiérrez M., and Medina S.A. (2020). Biodigester with Mixing by hydraulic recirculation of the wastewater on biogas production: fundamentals in the design and scaling by a dimensional analysis. Revista Mexicana de Ingeniería Química 19, 81–99. https://doi.org/10.24275/rmiq/Bio1545.

Müller, T., Walter, B., Wirtz, A., and Burkovski, A. (2006). Ammonium toxicity in bacteria. Current Microbiology 52, 400–406. https://doi.org/10.1007/s00284-005-0370-x

Muñoz, K., Poggi, H., García, J., Ponce, M., Ramos, A., Barrera, J., Robles, I., Ruiz, N., Villa, L., and Rinderknecht, N. (2014). Cheese whey as substrate of batch hydrogen production: Effect of temperature and addition of buffer. Waste Management & Research 32, 434–440. https://doi.org/10.1177/0734242X14527333

Nägele, H.J., Steinbrenner, J., Hermanns, G., Holstein, V., Haag, N.L., and Oechsner, H. (2017). Innovative additives for chemical desulphurisation in biogas processes: A comparative study on iron compound products. Biochemical Engineering Journal 121, 181–187. https://doi.org/10.1016/j.bej.2017.01.006

Nielsen, H.B., and Angelidaki, I. (2008). Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresource Technology 99, 7995–8001. https://doi.org/10.1016/j.biortech.2008.03.049

Percheron, G., Bernet, N., and Moletta, R. (1999). Interactions between methanogenic and nitrate reducing bacteria during the anaerobic digestion of an industrial sulfate rich wastewater. FEMS Microbiology Ecology, 29, 341–350. https://doi.org/10.1016/S0168-6496(99)00028-8

Ramos, J.L., Vargas, C.L., Mata, J., and Camacho, Á. (2019). Evaluation of poultry manure and goat cheese whey anaerobic co-digestion. Spanish Journal of Agricultural Research 17, 1–14. https://doi.org/10.5424/sjar/2019172-14577

Reis, M.A.M., Lemos, P.C., Martins, M.J., Costa, P.C., Gonçalves, L.M.D., and Carrondo, M. J. T. (1991). Influence of sulfates and operational parameters on volatile fatty acids concentration profile in acidogenic phase. Bioprocess Engineering 6, 145–151. https://doi.org/10.1007/BF00369251

Roy, R., and Conrad, R. (1999). Effect of methanogenic precursors (acetate, hydrogen, propionate) on the suppression of methane production by nitrate in anoxic rice field soil. FEMS Microbiology Ecology 28, 49–61. https://doi.org/10.1111/j.1574-6941.1999.tb00560.x

Schönheit, P., Kristjansson, J.K., and Thauer, R.K. (1982). Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate. Archives of Microbiology 132, 285–288. https://doi.org/10.1007/BF00407967

Sheng, K., Chen, X., Pan, J., Kloss, R., Wei, Y., and Ying, Y. (2013). Effect of ammonia and nitrate on biogas production from food waste via anaerobic digestion. Biosystems Engineering 116, 205–212. https://doi.org/10.1016/j.biosystemseng.2013.08.005

Siles, J.A., Brekelmans, J., Martín, M.A., Chica, A.F., and Martín, A. (2010). Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion. Bioresource Technology 101, 9040–9048. https://doi.org/10.1016/j.biortech.2010.06.163

Soto, O., Aspé, E., and Roeckel, M. (2007). Kinetics of cross-inhibited denitrification of a high load wastewater. Enzyme and Microbial Technology 40, 1627–1634. https://doi.org/10.1016/j.enzmictec.2006.11.014

Sprott, G.D., and Patel, G.B. (1986). Ammonia toxicity in pure cultures of methanogenic bacteria. Systematic and Applied Microbiology 7, 358–363. https://doi.org/10.1016/S0723-2020(86)80034-0

Sterling, M., Lacey, R., Engler, C., and Ricke, S. (2001). Effects of ammonia nitrogen on H2 and CH4 production during anaerobic digestion of dairy cattle manure. Bioresource Technology 77, 9–18. https://doi.org/10.1016/S0960-8524(00)00138-3

Strik, D.P.B.T.B., Domnanovich, A.M., and Holubar, P. (2006). A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage. Process Biochemistry 41, 1235–1238. https://doi.org/10.1016/j.procbio.2005.12.008

Sun, H., Guo, J., Wu, S., Liu, F., and Dong, R. (2017). Development and validation of a simplified titration method for monitoring volatile fatty acids in anaerobic digestion. Waste Management 67, 43–50. https://doi.org/10.1016/j.wasman.2017.05.015

Sürmeli, R.Ö., Bayrakdar, A., Molaey, R., and Çalli, B. (2019). Synergistic effect of sulfide and ammonia on anaerobic digestion of chicken manure. Waste and Biomass Valorization 10, 609–615. https://doi.org/10.1007/s12649-017-0090-z

Tanimu, M.I., Mohd Ghazi, T.I., Harun, R.M., and Idris, A. (2014). Effect of carbon to nitrogen ratio of food waste on biogas methane production in a batch mesophilic anaerobic digester. International Journal of Innovation, Management and Technology 5, 116–119. https://doi.org/10.7763/IJIMT.2014.V5.497

Tian, H., Fotidis, I.A., Kissas, K., and Angelidaki, I. (2018). Effect of different ammonia sources on aceticlastic and hydrogenotrophic methanogens. Bioresource Technology 250, 390–397. https://doi.org/10.1016/j.biortech.2017.11.081

Wagner, A.O., Hohlbrugger, P., Lins, P., and Illmer, P. (2012). Effects of different nitrogen sources on the biogas production-a lab-scale investigation. Microbiological Research 167, 630–636. https://doi.org/10.1016/j.micres.2011.11.007

Waki, M., Yasuda, T., Fukumoto, Y., Kuroda, K., and Suzuki, K. (2013). Effect of electron donors on anammox coupling with nitrate reduction for removing nitrogen from nitrate and ammonium. Bioresource Technology 130, 592–598. https://doi.org/10.1016/j.biortech.2012.12.101

Wang, J., and Wan, W. (2009). Kinetic models for fermentative hydrogen production: A review. International Journal of Hydrogen Energy 34, 3313–3323. https://doi.org/10.1016/j.ijhydene.2009.02.031

Yao, Y., Bergeron, A.D., and Davaritouchaee, M. (2018). Methane recovery from anaerobic digestion of urea-pretreated wheat straw. Renewable Energy 115, 139–148. https://doi.org/10.1016/j.renene.2017.08.038

Yuan, H., and Zhu, N. (2016). Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion. Renewable and Sustainable Energy Reviews 58, 429–438. https://doi.org/10.1016/j.rser.2015.12.261

Zan, F., and Hao, T. (2020). Sulfate in anaerobic co-digester accelerates methane production from food waste and waste activated sludge. Bioresource Technology 298, 122536. https://doi.org/10.1016/j.biortech.2019.122536

Zhao, J., Hou, T., Lei, Z., Shimizu, K., and Zhang, Z. (2020). Effect of biogas recirculation strategy on biogas upgrading and process stability of anaerobic digestion of sewage sludge under slightly alkaline condition. Bioresource Technology 308, 123293. https://doi.org/10.1016/j.biortech.2020.123293

How to Cite
Cisneros de la Cueva, S., Balagurusamy, N., Pérez-Vega, S., Pérez-Reyes, I., Vázquez-Castillo, J., Zavala Díaz de la Serna, F., & Salmerón-Ochoa, I. (2021). Effects of different nitrogen sources on methane production, free ammonium and hydrogen sulfide in anaerobic digestion of cheese whey with cow manure. Revista Mexicana De Ingeniería Química, 20(3), 2566. https://doi.org/10.24275/rmiq/Bio2566