KCl/KOH supplementation improves acetic acid tolerance and ethanol production in a thermotolerant strain of Kluyveromyces marxianus isolated from henequen (Agave fourcroydes)

  • A.K. Castillo-Plata Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana-Cuajimalpa http://orcid.org/0000-0002-4303-3721
  • J.C. Sigala Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa https://orcid.org/0000-0002-1665-5680
  • P. Lappe-Oliveras Instituto de Biología, Universidad Nacional Autónoma de México https://orcid.org/0000-0001-7104-1967
  • S. Le Borgne Universidad Autónoma Metropolitana-Unidad Cuajimalpa
Keywords: Kluyveromyces marxianus, bioethanol, acetic acid tolerance, potassium, cell wall

Abstract

Kluyveromyces marxianusis the fastest-growing eukaryote on Earth and a promising non-conventional yeast for different biotechnological applications. One of these applications is the production of bioethanol from lignocellulosic hydrolysates at high temperature. Here, a new thermotolerant strain of K. marxianus(Kmx24) was isolated from a cooked henequen core. Its tolerance to acetic acid, one of the most common fermentation inhibitors present in lignocellulosic hydrolysates, was examined. Growth and ethanol production from glucose by Kmx24 were inhibited at acetic acid concentrations > 1.5 g/L. This sensitivity to acetic acid was alleviated by supplementation of the culture medium with KCl/KOH (40/10 mM) both at 30 and 42oC, although the observed effect was not so marked at 42oC. Increased cell viability and cell wall stiffness were observed on addition of KCl/KOH in the presence of acetic acid. It is suggested that improved acetic acid tolerance is due to an increase in potassium uptake allowing an efficient proton efflux, increased membrane integrity and strengthened membrane electrochemical potential. The link between KCl/KOH supplementation and cell wall stiffness needs further study. Temperature stress caused a decrease in the cell wall stiffness which was not relieved by KCl/KOH addition.

References

Abdel-Banat, B.M., Hoshida, H., Ano, A., Nonklang, S. and Akada, R. (2010). High temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Applied Microbiology and Biotechnology 85, 861-867. https://doi.org/10.1007/s00253-009-2248-5

Akin, H., Brandam, C., Meyer, X. and Strehaiano, P. (2008). A model for pH determination during alcoholic fermentation of a grape must by Saccharomyces cerevisiae. Chemical Engineering and Processing 47, 1986-1993. https://doi.org/10.1016/j.cep.2007.11.014

Almeida, J.R., Karhumaa, K., Bengtsson, O. and Gorwa-Grauslund, M.F. (2009). Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocellulose hydrolysate. Bioresource Technology 100, 3674–3677. https://doi.org/10.1016/j.biortech.2009.02.057

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Ariño, J., Ramos J. and Sychrová, H. (2010). Alkali metal cation transport and homeostasis in yeasts. Microbiology and Molecular Biology Reviews 74, 95-120. https://doi.org/10.1128/MMBR.00042-09

Auesukaree, C. (2017). Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. Journal of Bioscience and Bioengineering 124, 133–142. https://doi.org/10.1016/j.jbiosc.2017.03.009

Ballesteros, I., Ballesteros, M., Cabañas, A., Carrasco, J., Martín, C., Negro, M. J., Saez, F. and Saez, R. (1991). Selection of thermotolerant yeasts for simultaneous saccharification and fermentation (SSF) of cellulose to ethanol. Applied Biochemistry and Biotechnology 28-29, 307–315. https://doi.org/10.1007/BF02922610

Ballesteros, I., Oliva, J. M., Ballesteros, M. and Carrasco, J. (1993). Optimization of the simultaneous saccharification and fermentation process using thermotolerant yeasts. Applied Biochemistry and Biotechnology 39-40, 201–211. https://doi.org/10.1007/BF02918990

Ballesteros, I., Oliva, J.M., Ballesteros, M. and Carrasco, J. (1993). Optimization of the simultaneous saccharification and fermentation process using thermotolerant yeasts. Applied Biochemical and Biotechnology 39, 201-211. https://doi.org/10.1007/BF02918990

Ballesteros, M., Oliva, J.M., Negro, M.J., Manzanares, P. and Ballesteros, I. (2004). Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry 39, 1843–1848. https://doi.org/10.1016/j.procbio.2003.09.011

Castrillo, J.I., de Miguel, I. and Ugalde, U.O. (1995). Proton production and consumption pathways in yeast metabolism: a chemostat culture analysis. Yeast 11,1353-65. https://doi.org/10.1002/yea.320111404

Choudhary, J., Singh, S. and Nain, L. (2016). Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electronic Journal of Biotechnology Biotechnology 21, 82–92. https://doi.org/10.1016/j.ejbt.2016.02.007

Colunga-Garcíamarín, P. and May-Pat, F. (1993). Agave studies in Yucatan, Mexico. I. Past and present germplasm diversity and uses. Economic Botany 47, 312–327. https://doi.org/10.1007/BF02862301

Cordero-Soto, I., Castillo-Araiza, C., Rutiaga-Quiñones, O., Moussa, M., Béal, C., Gallegos-Infante, A., Soto-Cruz, N., Ochoa-Martínez, L., & Huerta-Ochoa, S. (2021). Intensification of 2-phenylethanol production using an aerated system assisted by a membrane-based solvent extraction technique. Revista Mexicana De Ingeniería Química 20(2), 739-750. https://doi.org/10.24275/rmiq/Bio2060

Cunha, J.T., Costa, C.E., Ferraz, L., Romaní, A., Johansson, B., Sá-Correia, I. and Domingues, L. (2018). HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms. Applied Microbiology and Biotechnology 102, 4589–4600. https://doi.org/10.1007/s00253-018-8955-z

Dasgupta, D., Ghosh, D., Bandhu, S. and Adhikari, D.K. (2017). Lignocellulosic sugar management for xylitol and ethanol fermentation with multiple cell recycling by Kluyveromyces marxianus IIPE453. Microbiological Research 200, 64–72. https://doi.org/10.1016/j.micres.2017.04.002

Do, D., Theron, C.W. and Fickers, P. (2019). Organic wastes as feedstocks for non-conventional yeast-based bioprocesses. Microorganisms 7, 229. https://doi.org/10.3390/microorganisms7080229

Dong, Y., Hu, J., Fan, L. and Chen, Q. (2017). RNA-Seq-based transcriptomic and metabolomic analysis reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Scientific Reports 7, 42659. https://doi.org/10.1038/srep42659

Dos Santos, S.C., Teixeira, M.C., Dias, P.J. and Sá-Correia, I. (2014). MFS transporters required for multidrug/multixenobiotic (MD/MX) resistance in the model yeast: understanding their physiological function through post-genomic approaches. Frontiers in Physiology 5, 180. https://doi.org/10.3389/fphys.2014.00180

Du, B., Sharma, L.N., Becker, C., Chen, S.F., Mowery, R.A., van Walsum, G.P. and Chambliss, C.K. (2010). Effect of varying feedstock-pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnology and Bioengineering 107, 430–440. https://doi.org/10.1002/bit.22829

Fasoli, G., Barrio, E., Tofalo, R., Suzzi, G. and Belloch, C. (2016). Multilocus analysis reveals large genetic diversity in Kluyveromyces marxianus strains isolated from Parmigiano Reggiano and Pecorino di Farindola cheeses. International Journal of Food Microbiology 233, 1–10. https://doi.org/10.1016/j.ijfoodmicro.2016.05.028

Fernandes, A.R., Mira, N.P., Vargas, R.C., Canelhas, I., and Sá-Correia, I. (2005). Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochemical and Biophysical Research Communications 337, 95–103. https://doi.org/10.1016/j.bbrc.2005.09.010

Fonseca, G.G., Heinzle, E., Wittmann, C. and Gomber, A.K. (2008). The yeast Kluyveromyces marxianus and its biotechnological potential. Applied Microbiology and Biotechnology 79, 339-354. https://doi.org/10.1007/s00253-008-1458-6

Giannattasio, S., Guaragnella, N., Zdralević, M. and Marra, E. (2013). Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Frontiers in Microbiology 4, 33. https://doi.org/10.3389/fmicb.2013.00033

Guaragnella, N. and Bettiga, M. (2021). Acetic acid stress in budding yeast: from molecular mechanisms to applications. Yeast 38, 391–400. https://doi.org/10.1002/yea.3651

Haitani, Y., Tanaka, K., Yamamoto, M., Nakamura, T., Ando, A., Ogawa, J. and Shima, J. (2012). Identification of an acetate-tolerant strain of Saccharomyces cerevisiae and characterization by gene expression analysis. Journal of Bioscience and Bioengineering 114, 648–651. https://doi.org/10.1016/j.jbiosc.2012.07.002

Ismail, K.S., Sakamoto, T., Hasunuma, T., Zhao, X.Q. and Kondo, A. (2014). Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose. Biotechnology Journal 9, 1519–1525. https://doi.org/10.1002/biot.201300553

Kumar, B., Bhardwaj, N., Agrawal, K., Chaturvedi, V. and Verma, P. (2020) Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Processing Technology 199, 106244. https://doi.org/10.1016/j.fuproc.2019.106244

Lam, F.H., Ghaderi, A., Fink, G.R. and Stephanopoulos, G. (2014). Engineering alcohol tolerance in yeast. Science 346, 71-75. https://doi.org/10.1126/science.1257859

Lane, M.M. and Morrissey, J.P. (2010). Kluyveromyces marxianus: a yeast emerging from its sister’s shadow. Fungal Biology Reviews 24, 17-26. https://doi.org/10.1016/j.fbr.2010.01.001

Lane, M.M., Burke, N., Karreman, R., Wolfe, K.H., O'Byrne, C.P. and Morrissey, J.P. (2011). Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie Van Leeuwenhoek 100, 507-519. https://doi.org/10.1007/s10482-011-9606-x

Lane, M.M., Burke, N., Karreman, R., Wolfe, K.H., O'Byrne, C.P. and Morrissey, J.P. (2011). Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie Van Leeuwenhoek 100, 507-519. https://doi.org/10.1007/s10482-011-9606-x

Lappe-Oliveras, P., Moreno-Terrazas, R., Arrizón-Gaviño, J., Herrera-Suárez, T., García-Mendoza, A. and Gschaedler-Mathis, A. (2008). Yeasts associated with the production of Mexican alcoholic nondistilled and distilled Agave beverages. FEMS Yeast Research 8, 1037–1052. https://doi.org/10.1111/j.1567-1364.2008.00430.x

Leandro, M.J., Marques, S., Ribeiro, B., Santos, H. and Fonseca, C. (2019). Integrated process for bioenergy production and water recycling in the dairy industry: selection of Kluyveromyces strains for direct conversion of concentrated lactose-rich streams into bioethanol. Microorganisms 7, 545. https://doi.org/10.3390/microorganisms7110545

Lehnen, M., Ebert, B. E. and Blank, L. M. (2019). Elevated temperatures do not trigger a conserved metabolic network response among thermotolerant yeasts. BMC microbiology 19, 100. https://doi.org/10.1186/s12866-019-1453-3

Macpherson, N., Shabala, L., Rooney, H., Jarman, M.G. and Davies, J.M. (2005). Plasma membrane H+ and K+ transporters are involved in the weak-acid preservative response of disparate food spoilage yeasts. Microbiology 151, 1995-2003. https://doi.org/10.1099/mic.0.27502-0

Mira, N.P., Palma, M., Guerreiro, J.F. and Sá-Correia, I. (2010b). Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microbial Cell Factories 9, 79. https://doi.org/10.1186/1475-2859-9-79

Mira, N.P., Teixeira, M.C. and Sá-Correia, I. (2010a). Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. Omics: A Journal of Integrative Biology 14, 525–540. https://doi.org/10.1089/omi.2010.0072

Morano, K.A., Grant, C. M. and Moye-Rowley, W. S. (2012). The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190, 1157–1195. https://doi.org/10.1534/genetics.111.128033

Morrissey, J.P., Etschmann, M.M., Schrader, J. and de Billerbeck, G.M. (2015). Cell factory applications of the yeast Kluyveromyces marxianus for the biotechnological production of natural flavour and fragrance molecules. Yeast 32, 3-16. https://doi.org/10.1002/yea.3054

Mukherjee, V., Steensels, J., Lievens, B., Van de Voorde, I., Verplaetse, A., Aerts, G., Willems, K.A., Thevelein, J.M., Verstrepen, K.J. and Ruyters, S. (2014). Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production. Applied Microbiology and Biotechnology 98, 9483-9498. https://doi.org/10.1007/s00253-014-6090-z

Nurcholis, M., Murata, M., Limtong, S., Kosaka, T. and Yamada, M. (2019). MIG1 as a positive regulator for the histidine biosynthesis pathway and as a global regulator in thermotolerant yeast Kluyveromyces marxianus. Scientific Reports 9, 9926. https://doi.org/10.1038/s41598-019-46411-5

Oliva, J.M., Sáez, F., Ballesteros, I., González, A., Negro, M.J., Manzanares, P. and Ballesteros, M. (2003). Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Applied Biochemistry and Biotechnology 105-108, 141–153. https://doi.org/10.1385/abab:105:1-3:141

Olofsson, K., Bertilsson, M. and Lidén, G. (2008). A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnology for Biofuels 1, 7. https://doi.org/10.1186/1754-6834-1-7

Ortiz-Merino, R.A., Varela, J.A., Coughlan, A.Y., Hoshida, H., da Silveira, W.B., Wilde, C., Kuijpers, N., Geertman, J.M., Wolfe, K.H. and Morrissey, J.P. (2018). Ploidy variation in Kluyveromyces marxianus separates dairy and non-dairy isolates. Frontiers in Genetics 9, 94. https://doi.org/10.3389/fgene.2018.00094

Ovalle, R., Lim, S.T., Holder, B., Jue, C.K., Moore, C.W. and Lipke, P.N. (1998). A spheroplast rate assay for determination of cell wall integrity in yeast. Yeast 14, 1159–1166. https://doi.org/10.1002/(SICI)1097-0061(19980930)14:13<1159::AID-YEA317>3.0.CO;2-3

Palma, M., Guerreiro, J.F. and Sá-Correia I. (2018). Adaptive response and tolerance to acetic acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: a physiological genomics perspective. Frontiers in Microbiology 9, 274. https://doi.org/10.3389/fmicb.2018.00274

Pampulha, M.E. and Loureiro-Dias, M.C. (2000). Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiology Letters 184, 69–72. https://doi.org/10.1111/j.1574-6968.2000.tb08992.x

Park, J.-B., Kim, J.-S., Jang, S.-W., Hong, E. and Ha, S.-J. (2015). The application of thermotolerant yeast Kluyveromyces marxianus as a potential industrial workhorse for biofuel production. Korean Society for Biotechnology and Bioengineering Journal 30 , 125-131. https://doi.org/10.7841/ksbbj.2015.30.3.125

Pérez-Brito, D., Tapia-Tussell, R., Quijano-Ramayo, A., Larqué-Saavedra, A. and Lappe, P. (2007). Molecular characterization of Kluyveromyces marxianus strains isolated from Agave fourcroydes (Lem.) in Yucatan, Mexico. Molecular Biotechnology 37, 181–186. https://doi.org/10.1007/s12033-007-0036-y

Piper, P.W. (2011). Resistance of yeasts to weak organic acid food preservatives. Advances in Applied Microbiology 7, 97-113. https://doi.org/10.1016/B978-0-12-387044-5.00004-2

Qian, J., Qin, X., Yin, Q., Chu, J. and Wang, Y. (2011). Cloning and characterization of Kluyveromyces marxianus Hog1 gene. Biotechnology Letters 33, 571–575. https://doi.org/10.1007/s10529-010-0458-7

Radecka, D., Mukherjee, V., Mateo, R.Q., Stojiljkovic, M., Foulquié-Moreno, M.R. and Thevelein, J.M. (2015). Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Research 15, fov053. https://doi.org/10.1093/femsyr/fov053

Rentería-Martínez, O., Páez-Lerma, J., Rojas-Contreras, J., López-Miranda, J., Martell-Nevárez, M., & Soto-Cruz, N. (2021). Enhancing isoamyl acetate biosynthesis by Pichia fermentans. Revista Mexicana De Ingeniería Química 20(2), 621-633. https://doi.org/10.24275/rmiq/Bio2125

Ribeiro, R.A., Vitorino, M.V., Godinho, C.P., Bourbon-Melo, N., Robalo, T.T., Fernandes, F., Rodrigues, M.S. and Sá-Correia, I. (2021). Yeast adaptive response to acetic acid stress involves structural alterations and increased stiffness of the cell wall. Scientific Reports 11, 12652. https://doi.org/10.1038/s41598-021-92069-3

Rocha, S.N., Abrahão-Neto, J. and Gombert, A.K. (2011). Physiological diversity within the Kluyveromyces marxianus species. Antonie van Leeuwenhoek 100, 619–630. https://doi.org/10.1007/s10482-011-9617-7

Rugthaworn, P., Murata, Y., Machida, M., Apiwatanapiwat, W., Hirooka, A., Thanapase, W., Dangjarean, H., Ushiwaka, S., Morimitsu, K., Kosugi, A., Arai, T. and Vaithanomsat, P. (2014). Growth inhibition of thermotolerant yeast, Kluyveromyces marxianus, in hydrolysates from cassava pulp. Applied Biochemistry and Biotechnology 173, 1197–1208. https://doi.org/10.1007/s12010-014-0906-2

Schabort du, T.W., Letebele, P.K., Steyn, L., Kilian, S.G. and du Preez, J.C. (2016). Differential RNA-Seq, multi-network analysis and metabolic regulation analysis of Kluyveromyces marxianus reveals a compartimentalised response to xylose. PLoS One 11, e0156242. https://doi.org/10.1371/journal.pone.0156242

Suryawati, L., Wilkins, M.R., Bellmer, D.D., Huhnke, R.L., Maness, N.O. and Banat, I.M. (2008) Simultaneous saccharification and fermentation of Kanlow switchgrass pretreated by hydrothermolysis using Kluyveromyces marxianus IMB4. Biotechnology and Bioengineering 101, 894-902. https://doi.org/10.1002/bit.21965

Varela, J.A., Gethins, L., Stanton, C., Ross, P. and Morrissey, J.P. (2017). Applications of Kluyveromyces marxianus in biotechnology. In: Yeast Diversity in Human Welfare, (T. Satyanarayana and G. Kunze, eds.), pp. 439-453. Springer, Singapore.

Verdugo-Valdez, A., Segura-Garcia, L., Kirchmayr, M., Ramírez-Rodríguez, P., González -Esquinca, A., Coria, R. and Gschaedler-Mathis, A. (2011). Yeast communities associated with artisanal mezcal fermentations from Agave salmiana. Antonie Van Leeuwenhoek 100, 497–506. https://doi.org/10.1007/s10482-011-9605-y

White, T.J., Bruns, T., Lee, S. and Taylor, J.W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications, (M.A. Innis, D.H. Gelfand, J.J. Sninsky and T.J. White, eds.), pp. 315–322. Academic Press, New York. http://dx.doi.org/10.1016/b978-0-12-372180-8.50042-1

Xu, X., Williams, T.C., Divne, C., Pretorius, I.S. and Paulsen, I.T. (2019). Evolutionary engineering in Saccharomyces cerevisiae reveals a TRK1-dependent potassium influx mechanism for propionic acid tolerance. Biotechnology for Biofuels 12, 97. https://doi.org/10.1186/s13068-019-1427-6

Yenush, L., Merchan, S., Holmes, J. and Serrano, R. (2005). pH-Responsive, posttranslational regulation of the Trk1 potassium transporter by the type 1-related Ppz1 phosphatase. Molecular and Cellular Biology 25, 8683–8692. https://doi.org/10.1128/MCB.25.19.8683-8692.2005

Published
2021-12-12
How to Cite
Castillo-Plata, A., Sigala, J., Lappe-Oliveras, P., & Le Borgne, S. (2021). KCl/KOH supplementation improves acetic acid tolerance and ethanol production in a thermotolerant strain of Kluyveromyces marxianus isolated from henequen (Agave fourcroydes). Revista Mexicana De Ingeniería Química, 21(1), Bio2567. https://doi.org/10.24275/rmiq/Bio2567
Section
Biotechnology