Physicochemical, rheological and sensory characterization of a gluten-free English bread added with Oxalis tuberosa flour.

  • S.O. Espino-Manzano Universidad Tecnológica de Xicotepec de Juárez
  • R.G. Campos-Montiel ICAP-UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO
  • M. Vicente-Flores Universidad Tecnológica de Xicotepec de Juárez
  • J.J. Chanona-Pérez Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional.
  • M.J. González de los Montero-Sierra Universidad Tecnológica de Xicotepec de Juárez
Keywords: Gluten-free, red potato, microstructure, nutrition, sensory evaluation

Abstract

Physicochemical, rheological, structural and sensory parameters of the gluten-free English bread added with pregelatinized red potato flour (RPF) (Oxalis tuberosa) were studied. Five treatments were performed with 0, 6.6%, 13.2%, 19.8% and 26.4% of RPF. In a first stage the texture, physical parameters, and crumb structure were evaluated. According to the results, the best treatments were selected (6.6%, 13.2% of RPF) where they improved the texture of the product without compromising the physical characteristics. In the second stage, the selected treatments were subjected to microstructure analysis (environmental scanning electron microscopy and confocal laser scanning microscopy), nutritional analysis, measurement of the glycemic index (in vivo assay), determination of fatty acids and sensory evaluation of the breads. The results show that the addition of RPF in gluten-free English bread increases the extensibility of the dough, decreases the hardness, increases the volume, gives a more uniform crumb without fractures. In the nutritional aspect, the content of protein and ash increased, the content of saturated fatty acids decreased and the glycemic index of the product decreased with significant differences compared to the control (p<0.05). In addition, the treatment with 13.2% of RPF obtained a higher preference in the sensory evaluation. The incorporation of RPF is a good option to elaborate a gluten-free English bread with a higher nutritional and structural quality and with a better acceptance in the sensory evaluation.

Author Biography

M. Vicente-Flores, Universidad Tecnológica de Xicotepec de Juárez

Área Agroindustrial-Alimentaria

References

AACC. (2000). Approved Methods of the American Association of Cereal Chemists. In AACC International Approved Methods (10 th). https://doi.org/10.1094/aaccintmethod-54-30.02

Al-Saleh, A., & Brennan, C. S. (2012). Bread wheat quality: some physical, chemical and rheological characteristics of syrian and english bread wheat samples. Foods, 1(1), 3–17. https://doi.org/10.3390/foods1010003

Alba, K., Rizou, T., Paraskevopoulou, A., Campbell, G. M., & Kontogiorgos, V. (2020). Effects of blackcurrant fibre on dough physical properties and bread quality characteristics. Food Biophysics, 15(3), 313–322. https://doi.org/10.1007/s11483-020-09627-x

Añorve-Morga, J., Castañeda-Ovando, A., Cepeda-Saez, A., Archibold, A. D., Jaimez-Ordaz, J., Contreras-López, E., González-Olivares, L. G., & Rodríguez-Rodríguez, J. L. (2015). Microextraction method of medium and long chain fatty acids from milk. Food Chemistry, 172, 456–461. https://doi.org/10.1016/j.foodchem.2014.09.048

Astawan, M., & Widowati, S. (2011). Evaluation of nutrition and glycemic index of sweet potatoes. Indonesian Journal of Agricultural Science, 12(1), 40–46.

Baier-Schenk, A., Handschin, S., Von Schönau, M., Bittermann, A. G., Bächi, T., & Conde-Petit, B. (2005). In situ observation of the freezing process in wheat dough by confocal laser scanning microscopy (CLSM): Formation of ice and changes in the gluten network. Journal of Cereal Science, 42(2), 255–260. https://doi.org/10.1016/j.jcs.2005.04.006

Barrera, V., Tapia, C., & Monteros, A. (2004). Raíces y tubérculos andinos : Alternativas para la conservación y uso sostenible en el Ecuador. Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP).

Brites, C., Trigo, M. J., Santos, C., Collar, C., & Rosell, C. M. (2010). Maize-based gluten-free bread: Influence of processing parameters on sensory and instrumental quality. Food and Bioprocess Technology, 3(5), 707–715. https://doi.org/10.1007/s11947-008-0108-4

Cappa, C., Lucisano, M., & Mariotti, M. (2013). Influence of Psyllium, sugar beet fibre and water on gluten-free dough properties and bread quality. Carbohydrate Polymers, 98(2), 1657–1666. https://doi.org/10.1016/j.carbpol.2013.08.007

Chirinos, R., Betalleluz-Pallardel, I., Huamán, A., Arbizu, C., Pedreschi, R., & Campos, D. (2009). HPLC-DAD characterisation of phenolic compounds from Andean oca (Oxalis tuberosa Mol.) tubers and their contribution to the antioxidant capacity. Food Chemistry, 113(4), 1243–1251. https://doi.org/10.1016/j.foodchem.2008.08.015

Clapassón, P., Merino, N. B., Campderrós, M. E., Pirán Arce, M. F., & Rinaldoni, A. N. (2020). Assessment of brea gum as an additive in the development of a gluten-free bread. Journal of Food Measurement and Characterization, 14(3), 1665–1670. https://doi.org/10.1007/s11694-020-00414-3

Costantini, L., Lukšič, L., Molinari, R., Kreft, I., Bonafaccia, G., Manzi, L., & Merendino, N. (2014). Development of gluten-free bread using tartary buckwheat and chia flour rich in flavonoids and omega-3 fatty acids as ingredients. Food Chemistry, 165, 232–240. https://doi.org/10.1016/j.foodchem.2014.05.095

Demirkesen, I., Kelkar, S., Campanella, O. H., Sumnu, G., Sahin, S., & Okos, M. (2014). Characterization of structure of gluten-free breads by using X-ray microtomography. Food Hydrocolloids, 36, 37–44. https://doi.org/10.1016/j.foodhyd.2013.09.002

Demirkesen, I., Mert, B., Sumnu, G., & Sahin, S. (2010). Rheological properties of gluten-free bread formulations. Journal of Food Engineering, 96(2), 295–303. https://doi.org/10.1016/j.jfoodeng.2009.08.004

Díaz-Ramírez, M., Calderón-Domínguez, G., Chanona-Pérez, J. J., Janovitz-Klapp, A., López-Santiago, R., Farrera-Rebollo, R. R., & De La Paz Salgado-Cruz, M. (2013). Modelling sorption kinetic of sponge cake crumb added with milk syrup. International Journal of Food Science and Technology, 48(8), 1649–1660. https://doi.org/10.1111/ijfs.12135

Dobraszczyk, B. J., & Salmanowicz, B. P. (2008). Comparison of predictions of baking volume using large deformation rheological properties. Journal of Cereal Science, 47(2), 292–301. https://doi.org/10.1016/j.jcs.2007.04.008

Espino-Manzano, S., Güemes-Vera, N., Chanona-Pérez, J. J., Bernardino-Nicanor, A., Hernández-Uribe, J. P., Castañeda-Ovando, A., Piloni-Martini, J., & Alanís-García, E. (2018). Quality evaluation of gluten-free danish bread employing different flours and starches. Food Science and Technology Research, 24(5), 785–794. https://doi.org/10.3136/fstr.24.785

Fratelli, C., Muniz, D. G., Santos, F. G., & Capriles, V. D. (2018). Modelling the effects of psyllium and water in gluten-free bread: An approach to improve the bread quality and glycemic response. Journal of Functional Foods, 42, 339–345. https://doi.org/10.1016/j.jff.2018.01.015

Giaretta, D., Lima, V. A., & Carpes, S. T. (2018). Improvement of fatty acid profile in breads supplemented with Kinako flour and chia seed. Innovative Food Science and Emerging Technologies, 49, 211–214. https://doi.org/10.1016/j.ifset.2017.11.010

Giuberti, G., Marti, A., Fortunati, P., & Gallo, A. (2017). Gluten free rice cookies with resistant starch ingredients from modified waxy rice starches: Nutritional aspects and textural characteristics. Journal of Cereal Science, 76, 157–164. https://doi.org/10.1016/j.jcs.2017.06.008

Güémes-Vera, N., Peña-Bautista, R. J., Jiménez-Martínez, C., Dávila-Ortiz, G., & Calderón-Domínguez. (2008). Effective detoxification and decoloration of Lupinus mutabilis seed derivatives, and effect of these derivatives on bread quality and acceptance. Journal of the Science of Food and Agriculture, 88, 1135–1143. https://doi.org/10.1002/jsfa.3152

Hager, A. S., Wolter, A., Czerny, M., Bez, J., Zannini, E., Arendt, E. K., & Czerny, M. (2012). Investigation of product quality, sensory profile and ultrastructure of breads made from a range of commercial gluten-free flours compared to their wheat counterparts. European Food Research and Technology, 235(2), 333–344. https://doi.org/10.1007/s00217-012-1763-2

Hernández-Uribe, J. P., Meza-Nieto, M., Palma-Rodríguez, H. M., Navarro-Cortez, R. O., Guzmán-Ortiz, F. A., Bello-Pérez, L. A., & Vargas-Torres, A. (2020). Physicochemical, morphological, and molecular properties of starch isolated from Dioscorea and Oxalis tubers from Hidalgo state, Mexico. Starch/Staerke, 72(11–12). https://doi.org/10.1002/star.202000074

Hoenselaar, R. (2012). Saturated fat and cardiovascular disease: The discrepancy between the scientific literature and dietary advice. Nutrition, 28(2), 118–123. https://doi.org/10.1016/j.nut.2011.08.017

Jekle, M., & Becker, T. (2011). Dough microstructure: Novel analysis by quantification using confocal laser scanning microscopy. Food Research International, 44(4), 984–991. https://doi.org/10.1016/j.foodres.2011.02.036

Lau, E., Soong, Y. Y., Zhou, W., & Henry, J. (2015). Can bread processing conditions alter glycaemic response? Food Chemistry, 173, 250–256. https://doi.org/10.1016/j.foodchem.2014.10.040

Laureati, M., Giussani, B., & Pagliarini, E. (2012). Sensory and hedonic perception of gluten-free bread: Comparison between celiac and non-celiac subjects. Food Research International, 46(1), 326–333. https://doi.org/10.1016/j.foodres.2011.12.020

López-Fernández, M., Méndez-Montealvo, G., Velazquez, G., Perales-Torres, A., Santiago-Adame, R., & Castillo-Ruiz, O. (2021). Effect of adding pineapple (Ananas comosus) flour on the sensory and textural properties of wheat flour (Triticum aestivum) cookies. Revista Mexicana de Ingeniería Química, 20(3), Alim2406. https://doi.org/https://doi.org/10.24275/rmiq/Alim2406

Mariotti, M., Pagani, M. A., & Lucisano, M. (2013). The role of buckwheat and HPMC on the breadmaking properties of some commercial gluten-free bread mixtures. Food Hydrocolloids, 30(1), 393–400. https://doi.org/10.1016/j.foodhyd.2012.07.005

Milde, L. B., Ramallo, L. A., & Puppo, M. C. (2012). Gluten-free bread based on tapioca starch: Texture and sensory studies. Food and Bioprocess Technology, 5(3), 888–896. https://doi.org/10.1007/s11947-010-0381-x

Mohammadi, M., Azizi, M. H., Neyestani, T. R., Hosseini, H., & Mortazavian, A. M. (2015). Development of gluten-free bread using guar gum and transglutaminase. Journal of Industrial and Engineering Chemistry, 21, 1398–1402. https://doi.org/10.1016/j.jiec.2014.06.013

Morales-Hernández, J. A., Chanona-Pérez, J. J., Villanueva-Rodríguez, S. J., Perea-Flores, M. J., & Urias-Silvas, J. E. (2019). Technological and Structural Properties of Oat Cookies Incorporated with Fructans (Agave tequilana Weber). Food Biophysics, 14(4), 415–424. https://doi.org/10.1007/s11483-019-09589-9

Onyango, C., Mutungi, C., Unbehend, G., & Lindhauer, M. G. (2011). Modification of gluten-free sorghum batter and bread using maize, potato, cassava or rice starch. LWT - Food Science and Technology, 44(3), 681–686. https://doi.org/10.1016/j.lwt.2010.09.006

Packer, S. C., Dornhorst, A., & Frost, G. S. (2000). The glycaemic index of a range of gluten-free foods. Diabetic Medicine, 17(9), 657–660. https://doi.org/10.1046/j.1464-5491.2000.00356.x

Pagliarini, E., Laureati, M., & Lavelli, V. (2010). Sensory evaluation of gluten-free breads assessed by a trained panel of celiac assessors. European Food Research and Technology, 231(1), 37–46. https://doi.org/10.1007/s00217-010-1249-z

Pongjaruvat, W., Methacanon, P., Seetapan, N., Fuongfuchat, A., & Gamonpilas, C. (2014). Influence of pregelatinised tapioca starch and transglutaminase on dough rheology and quality of gluten-free jasmine rice breads. Food Hydrocolloids, 36, 143–150. https://doi.org/10.1016/j.foodhyd.2013.09.004

Poutanen, K., Flander, L., & Katina, K. (2009). Sourdough and cereal fermentation in a nutritional perspective. Food Microbiology, 26(7), 693–699. https://doi.org/10.1016/j.fm.2009.07.011

Rodriguez-Lora, M. C., Ciro-Velásquez, H. J., Salcedo-Mendoza, J. G., & Serna-Fadul, T. (2020). Development and characterization of a dehydrated mixture based on pumpkin flour (Cucurbita maxima) incorporating modified starch of yam (D. alata cv. Diamante 22) with potential application for instantaneous soups. Revista Mexicana de Ingeniera Quimica, 19(3), 1011–1025. https://doi.org/10.24275/rmiq/Alim1031

Sánchez-Pardo, M. E., Ortiz-Moreno, A., García-Zaragoza, F. J., Necoechea-Mondragón, H., & Chanona-Pérez, J. J. (2012). Comparison of pound cake baked in a two cycle microwave-toaster oven and in conventional oven. LWT - Food Science and Technology, 46(1), 356–362. https://doi.org/10.1016/j.lwt.2011.08.013

Scazzina, F., Dall’Asta, M., Casiraghi, M. C., Sieri, S., Del Rio, D., Pellegrini, N., & Brighenti, F. (2016). Glycemic index and glycemic load of commercial Italian foods. Nutrition, Metabolism and Cardiovascular Diseases, 26(5), 419–429. https://doi.org/10.1016/j.numecd.2016.02.013

Schober, T. J., Bean, S. R., Boyle, D. L., & Park, S. H. (2008). Improved viscoelastic zein-starch doughs for leavened gluten-free breads: Their rheology and microstructure. Journal of Cereal Science, 48(3), 755–767. https://doi.org/10.1016/j.jcs.2008.04.004

Sulieman, A. A., Zhu, K. X., Peng, W., Hassan, H. A., Obadi, M., Ahmed, M. I., & Zhou, H. M. (2019). Effect of Agaricus bisporus polysaccharide flour and inulin on the antioxidant and structural properties of gluten-free breads. Journal of Food Measurement and Characterization, 13(3), 1884–1897. https://doi.org/10.1007/s11694-019-00107-6

Sulieman, A. A., Zhu, K. X., Peng, W., Shoaib, M., Obadi, M., Hassanin, H. A. M., Alahmad, K., & Zhou, H. M. (2018). Assessment of rheological, physicochemical, and staling characteristics of gluten-free dough and bread containing Agaricus bisporus polysaccharide flour and inulin. Journal of Food Measurement and Characterization, 12(3), 2032–2044. https://doi.org/10.1007/s11694-018-9818-0

Totosaus, A., López, H., & Güemes-Vera, N. (2013). Effect of lupinus (Lupinus albus) and jatropha (Jatropha curcas) protein concentrates on wheat dough texture and bread quality: optimization by a D-Optimal mixture design. Journal of Texture Studies, 44(6), 424–435. https://doi.org/10.1111/jtxs.12031

Vici, G., Belli, L., Biondi, M., & Polzonetti, V. (2016). Gluten free diet and nutrient deficiencies: A review. Clinical Nutrition, 35(6), 1236–1241. https://doi.org/10.1016/j.clnu.2016.05.002

Wagner, G., Zeiler, M., Grylli, V., Berger, G., Huber, W. D., Woeber, C., Rhind, C., & Karwautz, A. (2016). Coeliac disease in adolescence: Coping strategies and personality factors affecting compliance with gluten-free diet. Appetite, 101, 55–61. https://doi.org/10.1016/j.appet.2016.02.155

Wolever, T. M. S. (2004). Effect of blood sampling schedule and method of calculating the area under the curve on validity and precision of glycaemic index values. British Journal of Nutrition, 91(2), 295–300. https://doi.org/10.1079/bjn20031054

Ziobro, R., Witczak, T., Juszczak, L., & Korus, J. (2013). Supplementation of gluten-free bread with non-gluten proteins. Effect on dough rheological properties and bread characteristic. Food Hydrocolloids, 32(2), 213–220. https://doi.org/10.1016/j.foodhyd.2013.01.006

Published
2021-11-03
How to Cite
Espino-Manzano, S., Campos-Montiel, R., Vicente-Flores, M., Chanona-Pérez, J., & González de los Montero-Sierra, M. (2021). Physicochemical, rheological and sensory characterization of a gluten-free English bread added with Oxalis tuberosa flour. Revista Mexicana De Ingeniería Química, 20(3), Alim2572. https://doi.org/10.24275/rmiq/Alim2572
Section
Food Engineering