Characterization of the biological sulfide oxidation process: in-situ pulse respirometry and ex-situ pulse microrespirometry approach

  • G.A. Keb-Fonseca Unidad Profesional Interdisciplinaria de Biotecnología. Instituto Politécnico Nacional
  • C. Guerrero-Barajas
  • A. Ordaz Universidad Mexiquense del Bicentenario
Keywords: pulse microrespirometry, sulfide oxidation, airlift bioreactor, microreactor, inhibition models.


During the optimization of environmental biotechnology processes, it is important to count on proper and reliable information about the kinetic and stoichiometric parameters of the microorganisms. In this work, the biological sulfide oxidation process was assessed under two novel dynamic pulse respirometric approaches: in-situ pulse respirometry conducted in airlift bioreactor and ex-situ pulse respirometry carried out in microreactors (microrespirometry) with samples taken from the airlift bioreactor. The process was characterized in terms of the growth yield, substrate oxidation yield, maximum oxygen uptake rate, affinity constant, and mass transfer coefficient. The in-situ pulse respirometry showed to be a reproducible technique that allowed the determination of the kinetic and stoichiometric parameters besides the detection of mass transfer limitations in the airlift bioreactor, however, its use in biological sulfide oxidation is limited to a few experiments and experimental conditions with significant time investment. On the other hand, the ex-situ pulse microrespirometry allowed the acquisition of a higher amount of information under a broader range of sulfide concentrations (from 5 to 60 mg H2S L-1) and experimental conditions such as different pH values. The results obtained showed that the ex-situ microrespirometry technique would be preferable over in-situ pulse respirometry for the proper and reliable characterization of the sulfide oxidation process.


Abdel-Monaem Zytoon, M., Ahmad AlZahrani, A., Hamed Noweir, M., & Ahmed El-Marakby, F. (2014). Bioconversion of high concentrations of hydrogen sulfide to elemental sulfur in airlift bioreactor. Scientific World Journal, 2014, 675673.
Almomani, F. A., Bhosale, R. R., Kumar, A., & Kennes, C. (2016). Removal of volatile sulfur compounds by solar advanced oxidation technologies and bioprocesses. Solar Energy, 135, 348–358.
APHA, AWWA, & WPCF. (2017). Standard Method For the examination for Water and Wastewater. In Standard Method For the examination for Water and Wastewater. (23rd ed.). American Public Health Association.
Bonilla-Blancas, W., Mora, M., Revah, S., Baeza, J. A., Lafuente, J., Gamisans, X., Gabriel, D., & González-Sánchez, A. (2015). Application of a novel respirometric methodology to characterize mass transfer and activity of H2S-oxidizing biofilms in biotrickling filter beds. Biochemical Engineering Journal, 99, 24–34.
Buisman, C. J., Geraats, B. G., Ijspeert, P., & Lettinga, G. (1990). Optimization of sulphur production in a biotechnological sulphide‐removing reactor. Biotechnology and Bioengineering, 35(1), 50–56.
Cerri, M. O., Nordi Esperança, M., Colli Badino, A., & Perencin de Arruda Ribeiro, M. (2016). A new approach for kLa determination by gassing-out method in pneumatic bioreactors. Journal of Chemical Technology and Biotechnology, 91(12), 3061–3069.
Chandran, K., & Smets, B. F. (2000). Applicability of two-step models in estimating nitrification kinetics from batch respirograms under different relative dynamics of ammonia nitrite oxidation. Biotechnology and Bioengineering, 70(1), 54–64.<54::AID-BIT7>3.0.CO;2-H
Chen, K., & Morris, J. C. (1972). Kinetics of Oxidation of aqueous sulfide by oxygen. Environmental Science and Technology, 6(6), 529–537.
Ellis, T. G., Barbeau, D. S., Smets, B. F., & Grady Jr, C. L. (1996). Respirometric technique for determination of extant kinetic parameters describing biodegradation. Water Environment Research, 68(5), 917–926.
Espinoza-Rodríguez, M.A., Flores-Álamo, N., Esparza-Soto, M., & Fall, C. (2012). Effect of temperature in the growth rates and decayheterotrophic in the range of 20-32◦c in activated sludge process. Revista Mexicana de Ingeniería Química, 11(2), 309-321.
Esquivel-Rios, I., Ramirez-Vargas, R., Hernandez-Martinez, G. R., Vital-Jacome, M., Ordaz, A., & Thalasso, F. (2014). A microrespirometric method for the determination of stoichiometric and kinetic parameters of heterotrophic and autotrophic cultures. Biochemical Engineering Journal, 83, 70–78.
Gonzalez-Sanchez, A., Tomas, M., Dorado, A. D., Gamisans, X., Guisasola, A., Lafuente, J., & Gabriel, D. (2009). Development of a kinetic model for elemental sulfur and sulfate formation from the autotrophic sulfide oxidation using respirometric techniques. Water Science and Technology, 59(7), 1323–1329.
Guerrero-Barajas, C., Ordaz, A., García-Solares, S. M., Garibay-Orijel, C., Bastida-González, F., & Zárate-Segura, P. B. (2015). Development of sulfidogenic sludge from marine sediments and trichloroethylene reduction in an upflow anaerobic sludge blanket reactor. JoVe (Journal of Visualized Experiments), (104), 1–11.
Haydar, S., & Aziz, J. A. (2009). Characterization and treatability studies of tannery wastewater using chemically enhanced primary treatment (CEPT)-A case study of Saddiq Leather Works. Journal of Hazardous Materials, 163(2–3), 1076–1083.
Hernández-Martínez, G. R., Zepeda, A., Ordaz, A., Sánchez-Catzin, L. A., Estrada-Díaz, Z. D., & Thalasso, F. (2018). High-throughput microrespirometric characterization of activated sludge inhibition by silver nanoparticles. Environmental Science: Water Research and Technology, 4(5), 721–730.
Jaber, M. B., Couvert, A., Amrane, A., Rouxel, F., Le Cloirec, P., & Dumont, E. (2016). Biofiltration of H2S in air-Experimental comparisons of original packing materials and modeling. Biochemical Engineering Journal, 112, 153–160.
Janssen, A. J. H., Sleyster, R., Van der Kaa, C., Jochemsen, A., Bontsema, J., & Lettinga, G. (1995). Biological sulphide oxidation in a fed-batch reactor. Biotechnology and Bioengineering, 47(3), 327–333.
Kensy, F., John, G. T., Hofmann, B., & Büchs, J. (2005). Characterisation of operation conditions and online monitoring of physiological culture parameters in shaken 24-well microtiter plates. Bioprocess and Biosystems Engineering, 28(2), 75–81.
Kleinjan, W. E., de Keizer, A., & Janssen, A. J. H. (2005). Kinetics of the reaction between dissolved sodium sulfide and biologically produced sulfur. Industrial & Engineering Chemistry Research, 44(2), 309–317.
Macdonald, F. (2010). A listing of log P values, water solubility, and molecular weight for some selected chemicals. In Handbook of Biochemistry and Molecular Biology (pp. 747–750). CRC Press.
Mora, M., Fernández, M., Gómez, J. M., Cantero, D., Lafuente, J., Gamisans, X., & Gabriel, D. (2015). Kinetic and stoichiometric characterization of anoxic sulfide oxidation by SO-NR mixed cultures from anoxic biotrickling filters. Applied Microbiology and Biotechnology, 99(1), 77–87.
Mora, M., López, L. R., Lafuente, J., Pérez, J., Kleerebezem, R., van Loosdrecht, M. C., Gamisans, X., & Gabriel, D. (2016). Respirometric characterization of aerobic sulfide, thiosulfate and elemental sulfur oxidation by S-oxidizing biomass. Water Research, 89, 282–292.
Nassar, I. M., Noor El-Din, M. R., Morsi, R. E., Abd El-Azeim, A., & Hashem, A. I. (2016). Eco Friendly nanocomposite materials to scavenge hazard gas H2S through fixed-bed reactor in petroleum application. Renewable and Sustainable Energy Reviews, 65, 101–112.
Ordaz, A., Oliveira, C. S., Alba, J., Carrión, M., & Thalasso, F. (2011). Determination of apparent kinetic and stoichiometric parameters in a nitrifying fixed-bed reactor by in situ pulse respirometry. Biochemical Engineering Journal, 55(2), 123–130.
Ordaz, A., Ramirez, R., Hernandez-Martinez, G. R., Carrión, M., & Thalasso, F. (2019). Characterization of kinetic parameters and mass transfer resistance in an aerobic fixed-bed reactor by in-situ respirometry. Biochemical Engineering Journal, 146(15 June), 194–202.
Orupõld, K., Maširin, A., & Tenno, T. (2001). Estimation of biodegradation parameters of phenolic compounds on activated sludge by respirometry. Chemosphere, 44(5), 1273–1280.
Park, D., Lee, D. S., Joung, J. Y., & Park, J. M. (2005). Comparison of different bioreactor systems for indirect H2S removal using iron-oxidizing bacteria. Process Biochemistry, 40(3–4), 1461–1467.
Pokorna, D., & Zabranska, J. (2015). Sulfur-oxidizing bacteria in environmental technology. Biotechnology Advances, 33(6), 1246–1259.
Ramirez-Vargas, R., Ordaz, A., Carrión, M., Hernández-Paniagua, I. Y., & Thalasso, F. (2013). Comparison of static and dynamic respirometry for the determination of stoichiometric and kinetic parameters of a nitrifying process. Biodegradation, 24(5), 675–684.
Ramirez-Vargas, Rocio, Vital-Jacome, M., Camacho-Perez, E., Hubbard, L., & Thalasso, F. (2014). Characterization of oxygen transfer in a 24-well microbioreactor system and potential respirometric applications. Journal of Biotechnology, 186, 58–65.
Sánchez-Andrea, I., Sanz, J. L., Bijmans, M. F., & Stams, A. J. (2014). Sulfate reduction at low pH to remediate acid mine drainage. Journal of Hazardous Materials, 269(3), 98–109.
Van Gemerden, H. (1968). Growth Measurement of Chromatium Cultures. Archiv Für Mikrobiologie, 64(2), 103–110.
Vannini, C., Munz, G., Mori, G., Lubello, C., Verni, F., & Petroni, G. (2008). Sulphide oxidation to elemental sulphur in a membrane bioreactor: Performance and characterization of the selected microbial sulphur-oxidizing community. Systematic and Applied Microbiology, 31(6–8), 461–473.
Velasco, A., Morgan-Sagastume, J. M., & González-Sánchez, A. (2019). Evaluation of a hybrid physicochemical/biological technology to remove toxic H2S from air with elemental sulfur recovery. Chemosphere, 222, 732–741.
Vital-Jacome, M., Buitrón, G., Moreno-Andrade, I., Garcia-Rea, V., & Thalasso, F. (2016). Microrespirometric determination of the effectiveness factor and biodegradation kinetics of aerobic granules degrading 4-chlorophenol as the sole carbon source. Journal of Hazardous Materials, 313, 112–121.
Vital-Jacome, M., Dochain, D., & Thalasso, F. (2017). Microrespirometric model calibration applied to wastewater processes. Biochemical Engineering Journal, 128, 168–177.
Xu, X. J., Chen, C., Guo, H. L., Wang, A. J., Ren, N. Q., & Lee, D. J. (2016). Characterization of a newly isolated strain Pseudomonas sp. C27 for sulfide oxidation: Reaction kinetics and stoichiometry. Scientific Reports, 6(1), 1–10.
Yongsiri, C., Hvitved-Jacobsen, T., Vollertsen, J., & Tanaka, N. (2003). Introducing the emission process of hydrogen sulfide to a sewer process model (WATS). Water Science and Technology, 47(4), 85–92.
Zhang, Y., Zhang, L., Li, L., Chen, G. H., & Jiang, F. (2018). A novel elemental sulfur reduction and sulfide oxidation integrated process for wastewater treatment and sulfur recycling. Chemical Engineering Journal, 342, 438–445.
Zhuo, Y., Han, Y., Qu, Q., Li, J., Zhong, C., & Peng, D. (2019). Characteristics of low H2S concentration biogas desulfurization using a biotrickling filter: Performance and modeling analysis. Bioresource Technology, 280, 143–150.
How to Cite
Keb-Fonseca, G., Guerrero-Barajas, C., & Ordaz, A. (2022). Characterization of the biological sulfide oxidation process: in-situ pulse respirometry and ex-situ pulse microrespirometry approach. Revista Mexicana De Ingeniería Química, 21(1), IA2575.
Environmental Engineering