Physical and geometrical considerations on the growth of Pichia pastoris in polyurethane foam slabs

  • D.E. Núñez-Reyes
  • E. Favela-Torres
  • G. Viniegra-González
  • M. López-Pérez Universidad Autónoma Metropolitana
Keywords: Polyurethane foam slabs, Solid-Substrate Fermentation, Pichia pastoris, respiratory quotient

Abstract

This work introduces the use of polyurethane foam (PUF) slabs for solid-substrate fermentation. Attention is paid to the distribution and properties of the liquid broth within the slabs in relation to the growth parameters of Pichia pastoris. The experimental setup was made of thin slabs supported horizontally by screens within cylindrical chambers. This way, water loss due to compression or gravity drain was minimal and exposure to tangential air flow was maximal. The highest biomass was Xmax = 39.5±3.3 gL-1 with (So) of 150 gL-1 of glucose. Biomass yield, Yx/s followed the correlation, Yx/s = 0.525-0.0018S0 (R2 = 0.996), and the growth rate m = 0.24 h-1/(S0/34.6). The respiratory quotient, RQ, followed a biphasic pattern with a maximal RQ » 1 when S0 = 50 gL-1. PUF micrographs showed that liquid was not retained when the integrity of the polyurethane network was disrupted at cutting edges of the slabs with an approximate depth of 0.025 cm, but the fraction of disrupted PUF would be small for wide slabs and h = 0.7 cm. The use of horizontal PUF slabs with thickness of 0.7 cm seems to be a practical way to upscale solid state fermentation (SSF) since a squared meter of this material could produce 83 g of yeast.

References

Bartolo-Aguilar, Y., Chávez-Carera, C., Cancino-Díaz, J. and Marsch, R. (2021). Expression of a synthetic protein with a high proportion of essential amio acids y Pichia pastoris. Revista Mexicana de Ingeniería Química 20(3) Bio2419. https://doi.org/10.24275/rmiq/Bio2419.

Bauer, F. and Pretorius, I. (2000). Yeast stress response and fermentation efficiency: how to survive the making of wine. South African Journal for Enology and Viticulture 21, 27. https://doi.org/10.21548/21-1-3557.

Boekhout, T. and Robert, V. (2003). Yeasts in food - beneficial and detrimental aspects. Behr's Verlag. Hamburg, Germany, 451-473 ISBN: 9781855737068. https://lib.ugent.be/catalog/ebk01:2510000000010432.

Cayetano-Cruz, M., De Los Santos, A.I.P., Garcia-Huante, Y., Santiago-Hernandez, A., Pavon-Orozco, P., López, V. and Hidalgo-Lara, M.E. (2016). High level expression of a recombinant xylanase by Pichia pastoris cultured in a bioreactor with methanol as the sole carbon source: Purification and biochemical characterization of the enzyme. Biochemical Engineering Journal 112,161–169. https://doi.org/10.1016/j.bej.2016.04.014.

Corona-González, R.I., Ramos-Ibarra, J.R., Gutiérrez-González, P., Pelayo-Ortiz, C., Guatemala-Morales, G.M. and Arriola-Guevara, E. (2020). The use of response surface methodology to evaluate the fermentation conditions in the production of tepache. Revista Mexicana de Ingeniería Química 12(1), 19-28. http://rmiq.org/ojs311/index.php/rmiq/article/view/1447.

Dashko, S., Zhou, N., Compagno. and C., Piškur, J. (2014). Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Research 14, (6) 826-832. https://doi: 10.1111/1567-1364.12161.

De Deken, R.H. (1966). The Crabtree effect: A regulatory system in yeast. Journal of General Microbiology 44: 149-156. https://doi.org/10.1099/00221287-44-2-149.

De Winde, H. (2003). Functional genetics of industrial yeasts; of ancient skills and modern applications. Topics in Current Genetics, vol 2. Springer, Berlin, Heidelberg 1-16. http://dx.doi.org/10.1007/3-540-37003-X.

Does, A.L. and Bisson, L.F. (1989). Comparison of glucose uptake kinetics in different yeasts. Journal of Bacteriology 171(3), 1303-8. https://doi: 10.1128/jb.171.3.1303-1308.1989.

Figueroa‐Montero, A., Esparza‐Isunza, T., Saucedo‐Castañeda, G., Huerta‐Ochoa, S., Gutiérrez‐Rojas, M. and Favela‐Torres, E. (2011). Improvement of heat removal in solid‐state fermentation tray bioreactors by forced air convection. Journal of Chemical Technology and Biotechnology 86(10), 1321-1331. https://doi.org/10.1002/jtcb.22637.

González-Hernández, J.C., Pérez, E., Damián, R.M. and Chávez-Parga, M.C. (2012) Isolation, molecular and fermentative characterization of a yeast used in ethanol production during mezcal elaboration. Revista Mexicana de Ingeniería Química 11(3), 389-400]. https://www.redalyc.org/articulo.oa?id=620268940.

Hang, H., Ye, X., Guo, M., Chu, J., Zhuang, Y., Zhang, M. and Zhang, S.A. (2009). Simple fermentation strategy for high-level production of recombinant phytase by Pichia pastoris using glucose as the growth substrate. Enzyme Microbiol Technology 44, 185–188. https://doi.org/10.1016/j.enzmictec.2008.12.002.

Henry, D. and Thomson, R.A. (1993). New process to treat strong biological waste. Water Science Technology 27(1), 213-218. https://doi.org/10.2166/wst.1993.0050.

Kern, A., Hartner, F.S., Freigassner, M., Spielhofer, J., Rumpf, C., Leitner, L., Kai-Uwe, F. and Glieder, A. (2007). Pichia pastoris ‘just in time’ alternative respiration. Microbiology 153, 1250–1260. http://dx.doi.org/10.1099/mic.0.2006/001404-0.

Li, H. and Xia, Y. (2018). High cell density fed-batch production of insecticidal recombinant ribotoxin hirsutellin A from Pichia pastoris. Microbiol Cell Factories 17, 145. https://doi.org/10.1186/s12934-018-0992-x.

Lima-Pérez, J., Rodríguez-Gómez, D., Loera, O., Viniegra-González, G. and López-Pérez, M. (2018), Differences in growth physiology and aggregation of Pichia pastoris cells between solid-state and submerged fermentations under aerobic conditions. Journal of Chemical Technology and Biotechnology 93, 527-532. https://doi.org/10.1002/jctb.5384.

López, M., Loera, O., Guerrero, M., Viader, J.M., Gallegos, J.A., Fernández, F.J., Favela, E. and Viniegra, G. (2010). Cell growth and Trametes versicolor laccase production in transformed Pichia pastoris cultured by solid-state or submerged fermentations. Journal of Chemical Technology and Biotechnology 85, 435-440. https://doi.org/10.1002/jctb.2306.

López-Pérez, M. and Viniegra-González, G. (2015). Production of protein and metabolites by yeast grown in solid state fermentation: present status and perspectives. Journal of Chemical Technology and Biotechnology 91(5),1224-1231(5). https://doi.org/10.1002/jctb.4819.

López-Pérez, M. and Viniegra González, G. (2019). Differential toxicity caused by methanol on the growth of Pichia pastoris cultured in solid-state and in submerged fermentation. Revista Mexicana de Ingeniería Química 16(3), 735-743. Retrieved from http://rmiq.org/ojs311/index.php/rmiq/article/view/730.

Marin-Cervantes, M.C., Matsumoto, Y., Ramírez-Coutiño, L., Rocha-Pino, Z., Viniegra, G. and Shira, K. (2008). Effect of moisture content in polyurethane foams as support for solid-substrate fermentation of Lecanicillium lecanii on the production profiles of chitinases. Process Biochemistry 43, 24-32. https://doi.org/10.1016/j.procbio.2007.10.009.

Ozcan. S. and Johnston, M. (1999). Function and regulation of yeast hexose transporters. Microbiology and Molecular Biology Reviews. 63(3),554-69. https://doi.org/10.1128/mmbr.63.3.554-569.199.

Pandey, A., Soccol, C.R. and Mitchell, D. (2000). New developments in solid state fermentation: I-bioprocesses and products. Process Biochemistry 35,1153–1169. https://doi.org/10.1016/S0032-9592(00)00152-7.

Petrikm-Käppeli, O. and Fiechte, A.R. (1983). An expanded concept for the glucose effect in the yeast Saccharomyces uvarum: involvement of short- and long-term regulation. Journal of General Microbiology. 129, 43-49. https://doi.org/10.1099/00221287-129-1-43.

Pliego-Sandoval, J., Amaya-Delgado, L., Mateos-Díaz, J.C., Rodríguez, J., Córdova, J., Alba, A., Jaubert, S. and Herrera-López, E.J. (2012). Multiplex Gas Sampler for Monitoring Respirometry in Column-Type Bioreactors used in Solid-State Fermentation. Biotechnology and Biotechnological Equipment 26(3),3031-3038. http://hdl.handle.net/123456789/894.

Romero Gomez, S., Augur, C. and Viniegra-González, G. (2000). Invertase production by Aspergillus niger in submerged solid-state fermentation. Biotechnology Letters 22, 1255-1258. 10.1023/A:1005659217932.

Shang, T., Si, D., Zhang, D., Liu, X., Zhao, L., Hu, C., Fu, Y. and Zhang, R. (2017). Enhancement of thermoalkaliphilic xylanase production by Pichia pastoris through novel fed-batch strategy in high cell-density fermentation. BMC Biotechnology 21,17(1):55. https://doi.org/10.1186/s12896-017-0361-6.

Thomson, J.M., Gaucher, E.A., Burgan, M.F., De Kee, D.W., Li, T., Aris, J.P. and Benner, S.A. (2005). Resurrecting ancestral alcohol dehydrogenases from yeast. Nature Genetics 37(6),630-5. https://doi: 10.1038/ng1553.

Trujillo-Ramírez, D., Bustos-Vázquez, M., Rodríguez-Durám, L. and Torres-de los Satos, R. (2021). Rice husk (Oryza sativa) as support in the immobilization of yeast cells. Revista Mexicana de Ingeniería Química 21 (1), Bio2558. https://doi.org/10.24275/rmiq/Bio2558.

Tschopp, J.F., Sverlow, G., Kosson, R., Craig, W. and Grinna, L. (1987). High level secretion of glycosylated invertase in the metylotrophic yeast Pichia pastoris. Biotechnology 5,1305–1308. https://doi:10.1038/NBT1287-1305.

Van Urk, H., Mak, P.R., Scheffers, W.A. and Van Dijken, J.P. (1988). Metabolic responses of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose excess. Yeast 4(4),283-91. https://doi.org/10.1002/yea.320040406.

Van Urk, H., Postma, E., Scheffers, W.A. and Van Dijken, J.P. (1989). Glucose Transport in Crabtree-positive and Crabtree-negative Yeasts. Journal of General Microbiology 135, 2399-2406. https://doi: 10.1099/00221287-135-9-2399.

Vasilakou, E., Machado, D., Theorell, A., Rocha, I., Nöh, K., Oldiges, M. and Wahl, S.A. (2016). Current state and challenges for dynamic metabolic modeling. Current Opinion of Microbiology 33, 97–104. https://doi.org/10.1016/j.mib.2016.07.008.

Veiga, A., Arrabaca, J.D. and Loureiro-Dias, M.C. (2003). Cyanide resistant respiration, a very frequent metabolic pathway in yeasts. FEMS Yeast Research 3, 239–245. https://doi.org/10.1016/S1567-1356(03)00036-9.

Viniegra, G., Favela, E., Aguilar, C., Romero, S., Diaz, G. and Augur, C. (2003). Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochemical Engineering 13, 157-167. https://doi.org/10.1016/S1369-703X(02)00128-6.

Yinliang, C., Cino, J., Hart, G., Freedman, D., White, C. and Komives, E.A. (1997). High protein expression in fermentation of recombinant Pichia pastoris by a fed-batch process. Process Biochemistry 32,107–111. https://doi.org/10.1016/S0032-9592(96)00052-0.

Zahrl, R.J., Peña, D.A., Mattanovich, D. and Gasser, B. (2017). Systems biotechnology for protein production in Pichia pastoris. FEMS Yeast Research 1:17(7). https://doi: 10.1093/femsyr/fox068.

Published
2022-01-12
How to Cite
Núñez-Reyes, D., Favela-Torres, E., Viniegra-González, G., & López-Pérez, M. (2022). Physical and geometrical considerations on the growth of Pichia pastoris in polyurethane foam slabs. Revista Mexicana De Ingeniería Química, 21(1), Bio2595. https://doi.org/10.24275/rmiq/Bio2595
Section
Biotechnology

Most read articles by the same author(s)