Selective leaching of zinc and lead from electric arc furnace dust using citrate and H2SO4 solutions. A kinetic perspective

Keywords: kinetics, leaching, EAFD, Zinc, Sodium-Citrate, Lead, sulfuric-acid

Abstract

The electric Arc Furnace Dust (EAFD) sample leaching using two different organic carboxylic anions has been previously studied, as a separate article. The aim of the present research work (Part II) is the study on the leaching kinetics of EAFD, comparing the efficiency of sodium citrate with that of sulfuric acid solutions. The effect of the solid / liquid ratio, temperature and reagent concentration in the leaching solutions on the metallic dissolution was analyzed. In both cases, the more stable phase of franklinite (ZnFe2O4) experienced minimal decomposition at room temperature, although almost complete extraction of zinc was possible with sulfuric acid at higher temperatures. The kinetics of franklinite decomposition conformed to the reaction-controlled Shrinking Core Model. Using the Arrhenius expression, the apparent activation energies for franklinite and lead dissolutions in H2SO4 were evaluated. On the other hand, citrate showed promise due to its selectivity in leaching non-ferrous metals oxides (ZnO and PbO).

References

Avery, H. E. (2002). Avery, H.E. (1974). Basic Reaction Kinetics and Mechanisms, London, England: Macmillan Publishers Ltd.
Baik, D. S., & Fray, D. J. (2000). Zn from EAF, HCl medium-plating,baik2000. 121–128.
Blanco, J., González, M., Orozco, C., Pérez, A. & Rodríguez, F. (2012). Contaminación ambiental: una visión desde la química. Ediciones Paraninfo, S.A. España.
Borda, J., & Torres, R. (2021). Comparative study of selective zinc leaching from EAFD using carboxylic agents Estudio. Rev. Mex. En g. Quim., 20(1), 389–398. https://doi.org/10.24275/rmiq/IA2022
Bruckard, W. J., Davey, K. J., Rodopoulos, T., Woodcock, J. T., & Italiano, J. (2005). Water leaching and magnetic separation for decreasing the chloride level and upgrading the zinc content of EAF steelmaking baghouse dusts. International Journal of Mineral Processing, 75(1–2), 1–20. https://doi.org/10.1016/j.minpro.2004.04.007
Castells, X. E. (2009). Reciclaje de residuos industriales. Control, 1–1033.
De Buzin, P. J. W. K., Heck, N. C., & Vilela, A. C. F. (2017). EAF dust: An overview on the influences of physical, chemical and mineral features in its recycling and waste incorporation routes. Journal of Materials Research and Technology, 6(2), 194–202. https://doi.org/10.1016/j.jmrt.2016.10.002
Gabos, M. B., de Abreu, C. A., & Coscione, A. R. (2009). Edta assisted phytorremediation of a Pb contaminated soil: Metal leaching and uptake by jack beans. Scientia Agricola, 66(4), 506–514. https://doi.org/10.1590/s0103-90162009000400012
García-Arreola, M.E; Soriano-Pérez, S.H; Flores-Vélez, L.M; Cano-Rodríguez, I; Alonso-Dávila, P.A. (2015). Comparación de ensayos de lixiviación estáticos de elementos tóxicos en residuos mineros. Rev. Mex. En g. Quim., 14 (1), 109-117.
Gamboa, O. (2017). Optimización de los Parámetros de Operación del Proceso de Reciclado de Zinc. Instituto Politécnico Nacional.
Hagni, A. M., Hagni, R. D., & Demars, C. (1991). Mineralogical characteristics of electric arc furnace dusts. Jom, 43(4), 28–30. https://doi.org/10.1007/BF03220543
Levenspiel, O. (1972). Chemical Reaction Engineering, 2nd ed. John Wiley & Sons, Inc. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf
Levenspiel, O. (1999). Chemical Reaction Engineering. 3rd ed. John Wiley & Sons, Inc.
Lin, S. W., Vargas-galarza, Z., & Félix-navarro, R. M. (2006). Optimizing the Conditions for Leaching Lead from Solid Waste Produced by Pyrometallurgical Process of Recycling Automobile Used Batteries. Journal of the Mexican Chemical Society, 50(2), 64–70.
Lozano-Lunar, A., da Silva, P. R., de Brito, J., Álvarez, J. I., Fernández, J. M., & Jiménez, J. R. (2019a). Performance and durability properties of self-compacting mortars with electric arc furnace dust as filler. Journal of Cleaner Production, 219, 818–832. https://doi.org/10.1016/j.jclepro.2019.02.145
Lozano-Lunar, Angélica, Raposeiro da Silva, P., de Brito, J., Fernández, J. M., & Jiménez, J. R. (2019b). Safe use of electric arc furnace dust as secondary raw material in self-compacting mortars production. Journal of Cleaner Production, 211, 1375–1388. https://doi.org/10.1016/j.jclepro.2018.12.002
Machado, J. G. M. S., Brehm, F. A., Moraes, C. A. M., Santos, C. A. dos, Vilela, A. C. F., & Cunha, J. B. M. da. (2006). Chemical, physical, structural and morphological characterization of the electric arc furnace dust. Journal of Hazardous Materials, 136(3), 953–960. https://doi.org/10.1016/j.jhazmat.2006.01.044
Madías, J. (2009). Reciclado de polvos de horno eléctrico. Revista Acero Latinoamericano, 513, 26–35.
Oustadakis, P., Tsakiridis, P. E., Katsiapi, A., & Agatzini-Leonardou, S. (2010). Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part I: Characterization and leaching by diluted sulphuric acid. Journal of Hazardous Materials, 179(1–3), 1–7. https://doi.org/10.1016/j.jhazmat.2010.01.059
Sayadi, M., & Hesami, S. (2017). Performance evaluation of using electric arc furnace dust in asphalt binder. Journal of Cleaner Production, 143, 1260–1267. https://doi.org/10.1016/j.jclepro.2016.11.156
Silva, V. S., Silva, J. S., Costa, B. D. S., Labes, C., & Oliveira, R. M. P. B. (2019). Preparation of glaze using electric-arc furnace dust as raw material. Journal of Materials Research and Technology, 8(6), 5504–5514. https://doi.org/10.1016/j.jmrt.2019.09.018
Sohn, H., & Wadsworth, M. (1979). Rate processes of extractive metallurgy. Plenum Press. https://doi.org/doi10.1007/978-1-4684-9117-3.
Torres, R., & Lapidus, G. T. (2016). Copper leaching from electronic waste for the improvement of gold recycling. Waste Management, 57, 131–139. https://doi.org/10.1016/j.wasman.2016.03.010
Torres, R., & Lapidus, G. T. (2017). Closed circuit recovery of copper, lead and iron from electronic waste with citrate solutions. Waste Management, 60, 561–568. https://doi.org/10.1016/j.wasman.2016.12.001
Torres, R., Segura-Bailón, B., & Lapidus, G. T. (2018). Effect of temperature on copper, iron and lead leaching from e-waste using citrate solutions. Waste Management, 71, 420–425. https://doi.org/10.1016/j.wasman.2017.10.029
Yang, Y., Wang, X., Wang, M., Wang, H., & Xian, P. (2015). Recovery of iron from red mud by selective leach with oxalic acid. Hydrometallurgy, 157, 239–245. https://doi.org/10.1016/j.hydromet.2015.08.021
Zhang, Y., Yu, X., & Li, X. (2011). Zinc recovery from franklinite by sulphation roasting. Hydrometallurgy, 109(3–4), 211–214. https://doi.org/10.1016/j.hydromet.2011.07.002
Published
2022-01-10
How to Cite
Borda, J., Torres, R., & Lapidus, G. (2022). Selective leaching of zinc and lead from electric arc furnace dust using citrate and H2SO4 solutions. A kinetic perspective. Revista Mexicana De Ingeniería Química, 21(1), Cat2606. https://doi.org/10.24275/rmiq/cat2606
Section
Catalysis, kinetics and reactors