Electrochemical evaluation of conjugated oligophenylenimine in aqueous medium for bandgap determination

  • M.A. Amado Briseño Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
  • C. Cortés-López Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
  • R.A. Vázquez-García Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
  • V.E. Reyes-Cruz Universidad Autonoma del Estado de Hidalgo
  • G. Urbano-Reyes Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México https://orcid.org/0000-0001-5461-4030
  • A. Trujillo-Estrada CONACYT - Consejo Nacional de Ciencia y Tecnología, Depto. de Cátedras, Av. Insurgentes Sur 1582, Col. Crédito constructor, Deleg. Benito Juárez, Ciudad de México, CP. 03940, México.
  • A. Espinosa-Roa CONACYT-Centro de Investigación en Química Aplicada, Parque de Innovación e Investigación Tecnológica (PIIT), Apodaca, NL, Mexico
Keywords: mechanosynthesis, oligophenyleneimine, cyclic voltammetry, organic semiconductor, diode.

Abstract

In the present work, three aqueous media were used: sodium acetate (NaC2H3O2), potassium nitrate (KNO3) and sodium nitrate (NaNO3) at two different scanning speeds, i.e. 50 and 100 mVs−1, to evaluate the bandgap of the conjugated oligophenylenimine called DAFCHO by cyclic voltammetry (CV). DAFCHO was synthesised by solid-phase mechanosynthesis from 2,7-diaminofluorene and 2-5-bisocycloxyterephthaldehyde and deposited as a film on a glass substrate. The results showed an electrochemical bandgap range of 2.39 to 2.47 eV at 50 mVs−1 and from 2.59 to 2.68 eV at 100 mVs−1, which are close to the optical bandgap and electrochemical bandgap of 2.56 eV and 2.35 eV obtained on the film, as calculated by UV–vis absorption spectroscopy and determined electrochemically in a BU4NPF6/ACN electrolyte in the literature. In addition, a greater degradation of the film of the organic compound DAFCHO was observed in the three aqueous media (NaC2H3O2, KNO3 and NaNO3), compared with the anhydrous medium (BU4NPF6/ACN) from the literature. On the other hand, the electrical evaluation of DAFCHO exhibits the characteristic behaviour of a P-N-type junction diode.

References

Abbas, Q., Gollas, B., & Presser, V. (2019). Reduced Faradaic Contributions and Fast Charging of Nanoporous Carbon Electrodes in a Concentrated Sodium Nitrate Aqueous Electrolyte for Supercapacitors. Energy Technology, 7(9), 1–9. https://doi.org/10.1002/ente.201900430

Amado-Briseño, M. Á., Hernández-Ortíz, O. J., Rodríguez, M. A. V., Ayala, K. A., del Pozo Melero, G., Herrero, B. R., Zanabria, A. G. H., Roa, A. E., & Vázquez-García, R. A. (2022). Mechanosynthesis of 2,2′-((1E,1′E)-(2,5-bis(octyloxy)-1,4-phenylene)bis(ethene-2,1-diyl))bis(6-bromoquinoline): optical, electroluminescence, electrical, electrochemical, and morphological studies. Journal of Materials Science: Materials in Electronics, 33(1), 126–138. https://doi.org/10.1007/s10854-021-07271-w

Amado-Briseño, M. A., Zárate-Hernández, L. Á., Alemán-Ayala, K., Alonso, O. C., Cruz-Borbolla, J., Vásquez-Pérez, J. M., Reyes-Cruz, V. E., Veloz-Rodríguez, M. A., Rueda-Soriano, E., Pandiyan, T., & Vázquez-García, R. A. (2019). Mechanosynthesis of photochromic oligophenyleneimines: Optical, electrochemical and theoretical studies. Molecules, 24(5). https://doi.org/10.3390/molecules24050849

Arrieta-Almario, AA, Mendoza-Fandiño, JM, & Palencia-Luna, MS (2020). Material compuesto elaborado a partir de biopolímero conductor de almidón de yuca y polianilina. Revista Mexicana de Ingeniería Química , 19 (2), 707-715. https://doi.org/10.24275/rmiq/Mat765

Banerjee, M., Bhosle, A. A., Chatterjee, A., & Saha, S. (2021). Mechanochemical Synthesis of Organic Dyes and Fluorophores. Journal of Organic Chemistry, 86(20), 13911–13923. https://doi.org/10.1021/acs.joc.1c01540

Bernal, W., Anandhan, K., Percino, M. J., Barbosa-García, O., Pérez-Gutiérrez, E., Cerón, M., Maldonado, J. L., Rivadeneyra, M. S., & Thamotharan, S. (2021). Optoelectronic properties of (Z)-3-(4-(4,5-diphenyl-1H-imidazole-2-yl)phenyl)-2-phenylacrylonitrile films under acid and thermal environments for tuning OLED emission. Dyes and Pigments, 187(January 2020), 1–10. https://doi.org/10.1016/j.dyepig.2020.109115

Chooto, P. (2019). Cyclic Voltammetry and Its Applications. Voltammetry. https://doi.org/10.5772/intechopen.83451

Dinesh Pathak, Sanjay Kumar, Sonali Andotra, Jibin Thomas, Navneet Kaur, P. K. and V. K. (2021). New tailored organic semiconductors thin films for optoelectronic applications. Physics of Organic Materials and Devices, 95(Eur. Phys. J. Appl. Phys.), 10.

Duan, L., & Uddin, A. (2020). Progress in Stability of Organic Solar Cells. Advanced Science, 7(11). https://doi.org/10.1002/advs.201903259

ensayos-mediante-uv-vis @ www.labte.es. (n.d.). http://www.labte.es/index.php/es/2013-11-03-19-54-23/tecnicas-espectroscopicas/ensayos-mediante-uv-vis

Espinosa-Roa, A., Cruz-Carrillo, M. de J., Ledesma-Juárez, A., Montoya del Angel, A., Romero-Borja, D., Güizado-Rodríguez, M., Rodríguez, M., Galindo, R., Maldonado, J. L., & Barba, V. (2019). Synthesis of polyfluorenes by oxidative polymerization, their characterization and implementation in organic solar cells. Journal of Materials Science: Materials in Electronics, 30(3), 2716–2725. https://doi.org/10.1007/s10854-018-0547-2

Flores-Noria, R., Vázquez, R., Arias, E., Moggio, I., Rodríguez, M., Ziolo, R. F., Rodríguez, O., Evans, D. R., & Liebig, C. (2014). Synthesis and optoelectronic properties of phenylenevinylenequinoline macromolecules. New Journal of Chemistry, 38(3), 974. https://doi.org/10.1039/c3nj01193c

Jia, X., Baird, E. C., Blochwitz-Nimoth, J., Reineke, S., Vandewal, K., & Spoltore, D. (2021). Selectively absorbing small-molecule solar cells for self-powered electrochromic windows. Nano Energy, 89(PB), 106404. https://doi.org/10.1016/j.nanoen.2021.106404

Ke, Y., Chen, J., Lin, G., Wang, S., Zhou, Y., Yin, J., Lee, P. S., & Long, Y. (2019). Smart Windows: Electro-, Thermo-, Mechano-, Photochromics, and Beyond. Advanced Energy Materials, 9(39), 1–38. https://doi.org/10.1002/aenm.201902066

Li, H., Zhang, Y., Hu, Y., Ma, D., Wang, L., Jing, X., & Wang, F. (2004). Novel Soluble N -Phenyl-Carbazole-Containing PPVs for Light-Emitting Devices : Synthesis , Electrochemical , Optical , and Electroluminescent Properties. 247–255. https://doi.org/10.1002/macp.200300037

Mejía-Hernández, F. G., Hernández-Ortíz, O. J., Muñoz-Pérez, F. M., Martínez-Pérez, A. I., Vázquez-García, R. A., Vera-Cárdenas, E. E., ... & Alemán-Ayala, K. (2021). Mechanochemical synthesis, linear and nonlinear optical properties of a new oligophenyleneimine with indole terminal moiety for optoelectronic application. Journal of Materials Science: Materials in Electronics, 32(5), 6283-6295. https://doi.org/10.1007/s10854-021-05344-4

Noirbent, G., Pigot, C., Bui, T. T., Péralta, S., Nechab, M., Gigmes, D., & Dumur, F. (2021). Dyes with tunable absorption properties from the visible to the near infrared range: 2,4,5,7-Tetranitrofluorene (TNF) as a unique electron acceptor. Dyes and Pigments, 189(January). https://doi.org/10.1016/j.dyepig.2021.109250

Pérez, A. I. M., Alonso, O. C., Borbolla, J. C., Vásquez-Pérez, J. M., Alonso, J. C., Ayala, K. A., Luna-Bárcenas, G., Pandiyan, T., & García, R. A. V. (2015). Synthesis of photochromic oligophenylenimines: Optical and computational studies. Molecules, 20(4), 5440–5455. https://doi.org/10.3390/molecules20045440

Rau, U., & Kirchartz, T. (2019). Charge Carrier Collection and Contact Selectivity in Solar Cells. Advanced Materials Interfaces, 6(20). https://doi.org/10.1002/admi.201900252

Saeed, Z. M., Dhokale, B., Shunnar, A. F., Awad, W. M., Hernandez, H. H., Naumov, P., & Mohamed, S. (2021). Crystal Engineering of Binary Organic Eutectics: Significant Improvement in the Physicochemical Properties of Polycyclic Aromatic Hydrocarbons via the Computational and Mechanochemical Discovery of Composite Materials. Crystal Growth and Design, 21(7), 4151–4161. https://doi.org/10.1021/acs.cgd.1c00420

Saive, R. (2019). S-Shaped Current-Voltage Characteristics in Solar Cells: A Review. IEEE Journal of Photovoltaics, 9(6), 1477–1484. https://doi.org/10.1109/JPHOTOV.2019.2930409

Sandford, C., Edwards, M. A., Klunder, K. J., Hickey, D. P., Li, M., Barman, K., Sigman, M. S., White, H. S., & Minteer, S. D. (2019). A synthetic chemist’s guide to electroanalytical tools for studying reaction mechanisms. Chemical Science, 10(26), 6404–6422. https://doi.org/10.1039/c9sc01545k

Singh, V. (2017). Band Gap and Resistivity Measurements of Semiconductor Materials For Thin Films. Journal of Emerging Technologies and Innovative Research (JETIR), 4(12), 1200-1210. https://www.jetir.org/view?paper=JETIR1712169

Sweety, Vashistha, V. K., Kumar, A., & Singh, R. (2019). Synthesis, Electrochemical and Antimicrobial Studies of Me6-Dibenzotetraazamacrocyclic Complexes of Ni(II) and Cu(II) Metal Ions. Russian Journal of Electrochemistry, 55(3), 161–167. https://doi.org/10.1134/S1023193519020113

Vazquez, A., Rodriguez, M., Castro-Carranza, A., Martinez-Castillo, J., Maldonado, J. L., Gutowski, J., & Nolasco, J. C. (2020). Numerical simulation of a bilayer organic solar cell based on boron chromophore compounds as acceptors. 2020 IEEE International Conference on Engineering Veracruz, ICEV 2020. https://doi.org/10.1109/ICEV50249.2020.9289666

xps @ www.scai.uma.es. (n.d.). https://www.scai.uma.es/areas/aqcm/xps/xps.html

Yahia, I. S., Zahran, H. Y., & Alamri, F. H. (2016). Pyronin y as new organic semiconductors: Structure, optical spectroscopy and electrical/dielectric properties. Synthetic Metals, 218, 19–26. https://doi.org/10.1016/j.synthmet.2016.04.024

Published
2022-07-07
How to Cite
Amado Briseño, M., Cortés-López, C., Vázquez-García, R., Reyes-Cruz, V., Urbano-Reyes, G., Trujillo-Estrada, A., & Espinosa-Roa, A. (2022). Electrochemical evaluation of conjugated oligophenylenimine in aqueous medium for bandgap determination. Revista Mexicana De Ingeniería Química, 21(2), Mat2619. https://doi.org/10.24275/rmiq/Mat2619
Section
Materials

Most read articles by the same author(s)