Valorisation of rice husks and bean straws through fuel pellets production: an experimental and modelling approach

  • C. Gutierrez-Antonio Universidad Autónoma de Querétaro
  • N. Hernández-Neri Universidad Autónoma de Querétaro
  • J.F. García-Trejo Universidad Autónoma de Querétaro
  • A.A. Feregrino-Pérez Universidad Autónoma de Querétaro
  • M. Toledano-Ayala Universidad Autónoma de Querétaro
Keywords: fuel pellets, biomass, waste valorisation, bean straw, rice husks.

Abstract

Worldwide, agricultural wastes represent an environmental problem due to their high volumes and inadequate disposal. Due to this, valorization of these wastes has been studied, being the production of biofuels a promising option. In particular, rice husks were proposed to produce fuel pellets, buy they do not fulfill the ISO 17225-6 standard due to its elevated ash content; thus, it is required to mix them with other wastes available in the same region. In Mexican states where rice is produced also bean is cultivated, whose residues are not used and have an elevated content of volatile solids. Therefore, the objective of this research is to produce fuel pellets from rice husk and bean straws that meet ISO 17225-6 standard. For this, the densification was carried out using three levels of moisture content and mixing ratios of the biomasses. Based on the experimental data, optimal densification conditions were found through a response surface analysis. Results show that fuel pellets produced from bean straw (90%) and rice husk (10%) with 15.0% of moisture content fulfill ISO 17225-6 standard.  At these conditions, fuel pellets have calorific power of 3,645.78 kcal/kg, 6.98 ash, 9.76% final moisture, 610.78 kg/m3 bulk density, and 99.51% durability.

References

Aguas, M.C.M., and Villarreal, E.A.S. (2016). Evaluación de la capacidad calorífica de biocombustible sólido a partir de residuos lignocelulósicos de café (Coffea Spp) frente a leña de espino (Vachellia Macracantha) y eucalipto (Eucalyptus Globulus Labill). Revista Científica Axioma, 15, 35-41. http://axioma.pucesi.edu.ec/index.php/axioma/article/view/457

AOAC. (2002). Official Methods of Analysis of AOAC International, Seventeen, AOAC International, Gaithersburg.

Arias Ortíz, R.A., and Meneses Cruz, J.D. (2016). Caracterización físico-química de residuos agroindustriales (cascarilla de arroz y cascarilla de café), como materia prima potencial para la obtención de bioetanol. Disertación Doctoral, Universidad Nacional Autónoma de Nicaragua, Nicaragua.

ASTM. (2004). ASTM Standard Test Method for Drop Shatter Test for Coke (ASTM D3038-93). https://doi:10.1520/D3038-93R04.

ASTM. (2007). Standard Test Method for Ash in Wood. https://doi.org/10.1520/D1102-84R07.

Berastegui Barranco, C., Ortega Rodríguez, J.P., Mendoza Fandiño, J.M., González Doria, Y.E., and Gómez Vasquez, R.D. (2017). Elaboración de biocombustibles sólidos densificados a partir de tusa de maíz, bioaglomerante de yuca y carbón mineral del departamento de Córdoba. Ingeniare. Revista Chilena De Ingeniería, 25, 4, 643-653. https://doi: 10.4067/S0718-33052017000400643.

Brand, M.A., Rodrigues, T.M., da Silva, J.P., and de Oliveira, J. (2021). Recovery of agricultural and wood wastes: the effect of biomass blends on the quality of pellets. Fuel, 284, 118881, https://doi.org/10.1016/j.fuel.2020.118881.

Castellano, J.M., Gómez, M., Fernández, M., Esteban, L.S., and Carrasco, J.E. (2015). Study on the effects of raw materials composition and pelletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses. Fuel, 139, 629-636. https://doi: 10.1016/j.fuel.2014.09.033.

Celma, A.R., Cuadros, F., and López-Rodríguez, F. (2012). Food and Bioproducts Processing Characterization of pellets from industrial tomato residues. Food And Bioproducts Processing, 90, 700–706. https://doi:10.1016/j.fbp.2012.01.007.

Chen, Ch., Yang, R., Wang, X., Qu, B., Zhang, M., Ji, G., and Li, A. (2022). Effect of in-situ torrefaction and densification on the properties of pellets from rice husk and rice straw. Chemosphere, 289, 133009. https://doi.org/10.1016/j.chemosphere.2021.133009.

Fadimatou, D.H., Hamadou, B., Mintsop Nguela, L.J., Christophe, G., and Michaud, P. (2021). Improvement of thermophysical quality of biomass pellets produced from rice husks. Energy Conversion And Management: X, 12, 100132, https://doi.org/10.1016/j.ecmx.2021.100132.

Fernández-Puratich, H., Oliver-Villanueva, J.V., Valiente, M., Verdú, S., and Albert, N. (2014). Desarrollo de pellets a partir de tres especies leñosas bajo condiciones mediterráneas. Madera Y Bosques, 20, 3, 97-111. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-04712014000300009

Forero-Nuñez, C.A., Jochum, J., and Sierra, F.E. (2015). Effect of particle size and addition of cocoa pod husk on the properties of sawdust and coal pellets. Ingeniería E Investigación, 35, 1, 17-23. https://doi: 10.15446/ing.investig.v35n1.46157.

García Bustamante C.A. and Masera Cerutti O. (2016). Estado del arte de la Bioenergía en México. Red Temática de Bioenergía (RTB) del CONACyT, México.

Goodman, B.A. (2020). Utilization of waste straw and husks from rice production: A review. Journal Of Bioresources And Bioproducts, 5(3), 143-162, https://doi.org/10.1016/j.jobab.2020.07.001.

Hach. (2015). Water Analysis Handbook. Hach Company, Loveland, USA. https://www.hach.com/wah.

Harun, N.Y., and Afzal, M.T. (2016). Effect of Particle Size on Mechanical Properties of Pellets Made from Biomass Blends. Procedia Engineering, 148, 93–99. https://doi:10.1016/j.proeng.2016.06.445.

Hernández, L.A., Forero, P.A., and Alfonso, J.P. (2014). Proyecto de Investigación: producción de biogás a partir de residuos agrícolas. Available at: https://www.academia.edu/10345310/PROYECTO_DE_INVESTIGACI%C3%93N _Producci%C3%B3n_de_Biog%C3%A1s_a_partir_de_residuos_agr%C3%ADcola s_. Accessed: December 16, 2021.

IEA. (2021). International Energy Agency. Sustainable Recovery – World Energy Outlook Special Report. Available at: https://www.iea.org/reports/sustainable-recovery. Accessed: September 09, 2021.

Iftikhar, M., Asghar, A., Ramzan, N., Sajjadi, N., and Chen, W. (2019). Biomass densification: Effect of cow dung on the physicochemical properties of wheat straw and rice husk based biomass pellets. Biomass And Bioenergy, 122, 1-16, https://doi.org/10.1016/j.biombioe.2019.01.005.

Ishii, K., and Furuichi, T. (2014). Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets. Waste Management, 34(12), 2621-2626, https://doi.org/10.1016/j.wasman.2014.08.008.

ISO. (2021). 17225-6:2021(en) Solid biofuels — Fuel specifications and classes — Part 6: Graded non-woody pellets.

Jeguirim, M., Limousy, L., and Dutournie, P. (2014). Pyrolysis kinetics and physicochemical properties of agropellets produced from spent ground coffee blended with conventional biomass. Chemical Engineering Research And Design, 92, 10, 1876-1882, https://doi.org/10.1016/j.cherd.2014.04.018.

Khan, M.A. (2015). Chapter 4 - Innovative ABC Techniques. In: Accelerated Bridge Construction (M.A. Khan ed.), Pp. 159-212. Butterworth-Heinemann.

Khan, R., Jabbar, A., Ahmad, I., Khan, W., Khan, A.N., and Mirza, J. (2012). Reduction in environmental problems using rice-husk ash in concrete. Construction and Building Materials, 30, 360-365. https://doi.org/10.1016/j.conbuildmat.2011.11.028.

Kijo-Kleczkowska, A., Sroda, K., Kosowska-Golachowska, M., Musial, T., and Wolski, K. (2016). Combustion of pelleted sewage sludge with reference to coal and biomass. Fuel, 170,141–160. https://doi:10.1016/j.fuel.2015.12.026.

Kusumaningrum, W.B., and Sofyan-Munawar, S. (2014). Prospect of Bio-pellet as an Alternative Energy to Substitute Solid Fuel Based. Energy Procedia, 47, 303– 309. https://doi: 10.1016/j.egypro.2014.01.229.

Liu, Z., Fei, B., Jiang, Z., and Cai, Z. (2014). Important properties of bamboo pellets to be used as commercial solid fuel in China. Wood Science and Technology, 48, 5, 903-917. https://doi: 10.1007/s00226-014-0648-x.

Liu, Z., Fei, B., Jiang, Z., Cai, Z., and Yu, Y. (2013). The properties of pellets from mixing bamboo and rice straw. Renewable Energy, 55, 1-5. https://doi: 10.1016/j.renene.2012.12.014.

Martínez-Guido, S.I., Ríos-Badrán, I.M., Gutiérrez-Antonio, C., and Ponce-Ortega, J.M. (2019). Strategic planning for the use of waste biomass pellets in Mexican power plants. Journal of Cleaner Production, 130, 622-632. https://doi.org/10.1016/j.renene.2018.06.084

Martínez-Guido, S.I., García-Trejo, J.F., Gutiérrez-Antonio, C., Domínguez-González, A., Gómez-Castro, F.I., and Ponce-Ortega, J.M. (2021). The integration of pelletized agricultural residues into electricity grid: Perspectives from the human, environmental and economic aspects. Journal of Cleaner Production, 321, 128932. https://doi.org/10.1016/j.jclepro.2021.128932

Mexican Government. (2019). https://www.gob.mx/agricultura/articulos/maiz-frijol-arroz-y-trigo-los-granos-basicos-de-mexico. Accessed: March 28, 2022.

Mikulčić, H., Zhang, Z., Baleta, J., and Klemeš, J.J. (2021). Sustainable development in period of COVID-19 pandemic. Journal of Cleaner Production, 328, 129577, https://doi.org/10.1016/j.jclepro.2021.129577.

Nishiguchi, S., and Tabata, T. (2016). Assessment of social, economic, and environmental aspects of woody biomass energy utilization: Direct burning and wood pellets. Renewable and Sustainable Energy Reviews, 57, 1279–1286. https://doi:10.1016/j.rser.2015.12.213.

NOM. (1976). Norma Oficial Mexicana. Determinación del Poder Calorífico en Desechos Sólidos. DGN-AA-33-1976. México.

Núñez, C.A.F., Fajardo, C.A.G., and Vargas, F.E.S. (2012). Producción y uso de pellets de biomasa para la generación de energía térmica: una revisión a los modelos del proceso de gasificación. Iteckne, 9, 1, 21-30. https://doi: 10.15332/iteckne.v9i1.57.

Obidziński S. (2014). Pelletization of biomass waste with potato pulp content. International Agrophysics, 28, 1, 85-91. https://doi: 10.2478/intag-2013-0030.

Okot, D.K., Bilsborrow, P.E., and Phan, A.N. (2019). Briquetting characteristics of bean straw-maize cob blend. Biomass and Bioenergy, 126, 150-158, https://doi.org/10.1016/j.biombioe.2019.05.009.

Özyuğuran, A., and Yaman, S. (2017). Prediction of Calorific Value of Biomass from Proximate Analysis. Energy Procedia, 107, 130-136, https://doi.org/10.1016/j.egypro.2016.12.149.

Pradhan, P., Mahajani, S.M., and Arora, A. (2018). Production and utilization of fuel pellets from biomass: A review. Fuel Processing Technology, 181, 215-232. https://doi: 10.1016/j.fuproc.2018.09.021.

Ríos-Badrán, I.M., Luzardo-Ocampo, I., García-Trejo, J.F., Santos-Cruz, J., and Gutiérrez-Antonio, C. (2020). Production and characterization of fuel pellets from rice husk and wheat straw. Renewable Energy, 145, 500-507. https://doi: 10.1016/j.renene.2019.06.048.

Rodríguez-Romero, L.A., Gutiérrez-Antonio, C., García-Trejo, J.F., and Feregrino-Pérez, A.A. (2022). Estudio comparativo de modelos matemáticos para predecir el poder calorífico de residuos agrícolas mexicanos. TecnoLógicas, 25(53), e2142, https://doi.org/10.22430/22565337.2142

Romero-González, J., Parra-Vargas, F., Cano-Rodríguez, I., Ríos-Arana, J., Fuentes-Hernández, R., and Ramírez-Flores, J. (2020). Biosorption of Pb (II) BY Agave tequilana Weber (AGAVE AZUL) BIOMASS. Revista Mexicana De Ingeniería Química, 6(3), 295-300. http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1958

SADER. (2021). Secretaría de Agricultura y Desarrollo Rural, 2021. Crecerá 15 por ciento la producción de arroz en el año comercial 2021: Agricultura. Available at: https://www.gob.mx/agricultura/prensa/crecera-15-por-ciento-la-produccion-de-arroz-en-el-ano-comercial-2021-agricultura?idiom=es. Accessed: December 16, 2021.

Sadh, P.K., Duhan, S., and Duhan, J.S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing 5, 1. https://doi.org/10.1186/s40643-017-0187-z

SAGARPA. (2015). Plan de manejo de residuos generados en actividades agrícolas primera etapa: diagnóstico nacional. Available at: https://www.gob.mx/cms/uploads/attachment/file/346978/Manejo_de_residuos_Detallado.pdf. Accessed: December 16, 2021.

Said, N., Abdel daiem, M.M., García-Maraver, A., and Zamorano, M. (2015). Influence of densification parameters on quality properties of rice straw pellets. Fuel Processing Technology, 138, 56-64, https://doi.org/10.1016/j.fuproc.2015.05.011.

Salazar-Pinto, B., Zea-Linares, V., Villanueva-Salas, J., and Gonzales-Condori, E. (2020). Cd (II) and Pb (II) biosorption in aqueous solutions using agricultural residues of Phaseolus vulgaris L.: Optimization, kinetics, isotherms and desorption. Revista Mexicana De Ingeniería Química, 20(1), 305-322. https://doi.org/10.24275/rmiq/IA1864

Saval, S. (2012). Aprovechamiento de residuos agroindustriales: pasado, presente y futuro. BioTecnología, 16(2), 14-46. https://smbb.mx/wp-content/uploads/2017/10/Revista_2012_V16_n2.pdf

Shan, M., Li, D., Jiang, Y., and Yang, X. (2016). Re-thinking china's densified biomass fuel policies: Large or small scale?. Energy Policy, 93, 119-126. https://doi: 10.1016/j.enpol.2016.02.050.

Sharma, A., Singh, G., and Arya, S.K. (2020). Biofuel from rice straw. Journal of Cleaner Production, 277, 124101, https://doi.org/10.1016/j.jclepro.2020.124101.

Shukla, S.S., Chava, R., Appari, S., Bahurudeen, A., and Kuncharam, B.V.R. (2022). Sustainable use of rice husk for the cleaner production of value-added products. Journal of Environmental Chemical Engineering, 10(1), 106899, https://doi.org/10.1016/j.jece.2021.106899.

SIAP. (2021). Servicio de Información Agroalimentaria y Pesquera. Available at: http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/ResumenProducto.do. Accessed: December 16, 2021.

SIE. (2021). Sistema de Información Energética. Consumo de energía eléctrica por entidad federativa. Available at: https://sie.energia.gob.mx/movil.do?action=applyOptions. Accessed: December 16, 2021.

Sierra Aguilar, J. (2010). Alternativas de aprovechamiento de la cascarilla de arroz en Colombia. Tesis de Maestría en Ingeniería Civil, Universidad de Sucre, Colombia.

Silva Hernández, C.A., Gutiérrez Antonio, C., García Trejo, J.F., and Feregrino Pérez, A.A. (2020). Revalorización de residuos agrícolas para la producción de pellets combustibles en el estado de Querétaro. Digital Ciencia@UAQRO, 13, 1, 36-45. https://revistas.uaq.mx/index.php/ciencia/article/view/42/50

Stelte, W., Holm, J.K., Sanadi, A.R., Barsberg, S., Ahrenfeldt, J., and Henriksen, U.B. (2011). Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions. Fuel, 90, 3285–3290. https://doi:10.1016/j.fuel.2011.05.011.

Tabatabai, M.A. (1996). Soil organic matter testing: an overview. In: Soil Organic Matter: Analysis and Interpretation (F.R. Magdoff, M.A. Tabatabai, and E.A. Hanlon eds.). Pp. 1-9. Soil Science Society of America (SSSA), Madison, WI (USA).

Tauro, R., García, C.A., Skutsch, M., and Masera, O. (2018). The potential for sustainable biomass pellets in Mexico: An analysis of energy potential, logistic costs and market demand. Renewable and Sustainable Energy Reviews, 82, 380–389. https://doi: 10.1016/j.rser.2017.09.036.

Theerarattananoon, K., Xu, F., Wilson, J., Ballard, R., Mckinney, L., Staggenborg, S., Vadlani, P., Pei, Z.J., and Wang, D. (2011). Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Industrial Crops and Products, 33, 325– 332. https://doi:10.1016/j.indcrop.2010.11.014.

Torres, L. O. (2008). Producción de biocombustibles sólidos de alta densidad en España. Boletín Informativo CIDEU, 5, 107-123. https://dialnet.unirioja.es/servlet/articulo?codigo=2718831

Tumuluru, J.S. (2016). Specific energy consumption and quality of wood pellets produced using high-moisture lodgepole pine grind in a flat die pellet mill. Chemical Engineering Research and Design, 110, 82-97, https://doi.org/10.1016/j.cherd.2016.04.007.

Tumuluru, J.S., Fillerup, E., Kane, J.J., and Murray, D. (2020). Advanced imaging techniques to understand the impact of process variables on the particle morphology in a corn stover pellet. Chemical Engineering Research and Design, 161, 130-145, https://doi.org/10.1016/j.cherd.2020.07.002.

Vargas-Solano, Z., Martínez-Trujillo, M., and Membrillo-Venegas, I. (2021). Conditioning and use of prickly pear peels for the production of lignocellulosic enzymes by Aspergillus niger sp. on solid-state cultures. Revista Mexicana De Ingeniería Química, 20(3), IA2446. https://doi.org/10.24275/rmiq/IA2446

Vassilev, S.V., Baxter, D., Andersen, L.K., and Vassileva, C.G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913-933, https://doi.org/10.1016/j.fuel.2009.10.022.

Villa Gomez, D.K., Becerra Castañeda, P., Montoya Rosales, J.J., and González Rodríguez, L.M. (2020). Anaerobic digestion of bean straw applying a fungal pre-treatment and using cow manure as co-substrate. Environmental Technology, 41, 22, 2863-2874, https://doi: 10.1080/09593330.2019.1587004.

WB. (2021). World Bank, Data – GDP. Available at: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD. Accessed: September 09, 2021.

Published
2022-04-14
How to Cite
Gutierrez-Antonio, C., Hernández-Neri, N., García-Trejo, J., Feregrino-Pérez, A., & Toledano-Ayala, M. (2022). Valorisation of rice husks and bean straws through fuel pellets production: an experimental and modelling approach. Revista Mexicana De Ingeniería Química, 21(2), Alim2679. https://doi.org/10.24275/rmiq/Alim2679
Section
Food Engineering

Most read articles by the same author(s)