Anaerobic digestion of agro-industrial waste: Anaerobic lagoons in Latin America

  • U. Galván-Arzola Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Av. Universidad S/N, Cd. Universitaria, cp 64451, San Nicolas de los Garza, Nuevo León, México
  • L.R. Miramontes-Martínez Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Av. Universidad S/N, Cd. Universitaria, cp 64451, San Nicolas de los Garza, Nuevo León, México.
  • C. Escamilla-Alvarado Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Av. Universidad S/N, Cd. Universitaria, cp 64451, San Nicolas de los Garza, Nuevo León, México.
  • J.E. Botello-Álvarez Tecnológico Nacional de México, campus Celaya
  • M.M. Alcalá-Rodríguez Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Av. Universidad S/N, Cd. Universitaria, cp 64451, San Nicolas de los Garza, Nuevo León, México.
  • R. Valencia-Vázquez Tecnológico Nacional de México, campus Durango
  • P. Rivas-García Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Av. Universidad S/N, Cd. Universitaria, cp 64451, San Nicolas de los Garza, Nuevo León, México.
Keywords: Anaerobic lagoons, anaerobic digestion, data science, agro-industrial wastes, inhibition phenomena

Abstract

The valorization of agro-industrial wastes (AW) by means of waste-to-energy strategies through anaerobic digestion (AD) is a reality in developed countries. In Latin America, there are different problems in the management of AW from intensive livestock farming. This study aims to provide a pseudo-radiography of AD management systems with a focus on anaerobic lagoons in Latin America (LATAM). Using data science, quantitative and qualitative data from 1003 scientific papers were synthesized and analyzed to form a database; which allowed evaluation of the congruence of the scientific research with the real problems of LATAM management. The results showed that anaerobic lagoons in the region are the main AW management systems (mainly bovine and swine manure) and that scientific research in this sector does not address the related problems. 38 types of inhibition phenomena with a total of 5264 mentions were addressed in the database. Nitrogen-related AR inhibition phenomena represented 21% of the incidences in this study, besides being the most significant phenomenon in anaerobic lagoons in LATAM

References

Abendroth, C., Vilanova, C., Günther, T., Luschnig, O., & Porcar, M. (2015). Eubacteria and archaea communities in seven mesophile anaerobic digester plants in Germany. Biotechnology for Biofuels, 8(1). https://doi.org/10.1186/s13068-015-0271-6

Achinas, S., Achinas, V., & Euverink, G. J. W. (2017). A Technological Overview of Biogas Production from Biowaste. Engineering, 3(3), 299–307. https://doi.org/10.1016/J.ENG.2017.03.002

Alemán-Nava, G. S., Meneses-Jácome, A., Cárdenas-Chávez, D. L., Díaz-Chavez, R., Jean-Francois Dallemand, N. S., Ornelas-Soto, N., García-Arrazola, R., & Parra, R. (2014). Bioenergy in Mexico: Status and perspective. Biofuels, Bioproducts and Biorefining, 6(3), 246–256. https://doi.org/10.1002/bbb

Angelidaki, I., Ellegraard, L., & Aharing, B. K. (1993). A Mathematical Model for Dynamic Simulation of Anaerobic Digestion of Complex Substrates: Focusing on Ammonia Inhibition. Biotechnology and Bioengineering, 42, 159–166. https://doi.org/10.1002/bit.260420203

Anwar, Z., Gulfraz, M., & Irshad, M. (2014). Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences, 7(2), 163–173. https://doi.org/10.1016/j.jrras.2014.02.003

Awulu, J. O., Omale, P. A., & Ameh, J. A. (2018). Comparative analysis of calorific values of selected agricultural wastes. Nigerian Journal of Technology, 37(4), 1141. https://doi.org/10.4314/njt.v37i4.38

Beddoes, J. C., Bracmort, K. S., Burns, R. T., & Lazarus, W. F. (2007). An Analysis of Energy Production Costs from Anaerobic Digestion Systems on U . S . Livestock Production Facilities.

Benato, A., & Macor, A. (2019). Italian biogas plants: Trend, subsidies, cost, biogas composition and engine emissions. Energies, 12(6), 1–31. https://doi.org/10.3390/en12060979

Berendes, D. M., Yang, P. J., Lai, A., Hu, D., & Brown, J. (2018). Estimation of global recoverable human and animal faecal biomass. Nature Sustainability, 1(11), 679–685. https://doi.org/10.1038/s41893-018-0167-0

Business France. (2017). Waste management. www.businessfrance.fr. Accessed: Nov 01, 2021.

Cantrell, K. B., Ducey, T., Ro, K. S., & Hunt, P. G. (2008). Livestock waste-to-bioenergy generation opportunities. Bioresource Technology, 99(17), 7941–7953. https://doi.org/10.1016/j.biortech.2008.02.061

Cassady, C. (1935). The High Cost of Culture. NASSP Bulletin, 19(58), 47–50. https://doi.org/10.1177/019263653501905814

CFR. (2021). Sources of Energy: A Comparison. https://world101.cfr.org/global-era-issues/climate-change/sources-energy-comparison. Accessed: Dec 02, 2021.

Chen, L., Toru, N., Katsuya, K., & So, S. (2020). Waste-to-Energy Incineration (Issue June).

Clark, J. H., Plegge, A. W., Davis, C. L., & McCoy, G. C. (1989). Effects of Calcium Carbonate on Ruminal Fermentation, Nutrient Digestibility, and Cow Performance. Journal of Dairy Science, 72(2), 493–500. https://doi.org/10.3168/jds.S0022-0302(89)79131-1

De La Cueva, S. C., Balagurusamy, N., Pérez-Vega, S. B., Pérez-Reyes, I., Vázquez-Castillo, J. A., De La Serna, F. J. Z. D., & Salmerón, I. (2021). Effects of different nitrogen sources on methane production, free ammonium and hydrogen sulfide in anaerobic digestion of cheese whey with cow manure. Revista Mexicana de Ingeniería Química, 20(3). https://doi.org/10.24275/rmiq/Bio2566

Dechezleprêtre, A., Glachant, M., & Ménière, Y. (2008). The Clean Development Mechanism and the international diffusion of technologies: An empirical study. Energy Policy, 36(4), 1273–1283. https://doi.org/10.1016/j.enpol.2007.12.009

EA. (2001). Towards sustainable agricultural waste management. In Energy.

EBA. (2020). European Biogas Association Annual Report 2020. 38. https://www.europeanbiogas.eu/eba-annual-report-2020/. Accessed: Dec 05, 2021.

EPA. (2011). Recovering value from MRFs. December, 1–120.

EPA. (2021). AgSTAR Data and Trends. https://www.epa.gov/agstar/agstar-data-and-trends#adpotential. Accessed: Dec 09, 2021.

Eurostat. (2018). Waste generation by economic activities and households. EU-28.

FAO. (2013). La Bioenergía en América Latina y el Caribe. In Organización de las Naciones Unidas para la Alimentación y Agricultura.

FAO. (2014). The future of food and agriculture: trends and challenges. In The future of food and agriculture: trends and challenges (Vol. 4, Issue 4).

FAO. (2015). Food Losses and Waste in Latin America and the Caribbean. April, 39.

FAO. (2021). Food Waste Index Report 2021. In Unep.

FMFA. (2019). Bioenergy in Germany : Facts and Figures (Issue January).

Francini, G., Lasagni, M., & Lombardi, L. (2020). Comparison of anaerobic digestion technologies: An Italian case study. Detritus, 9(March), 94–104. https://doi.org/10.31025/2611-4135/2020.13921

García, C., & Masera, O. (2016). Estado del Arte de la Bioenergía en México. In Red Temática de Bioenergía del Conacyt.

Garcia, N. H., Mattioli, A., Gil, A., Frison, N., Battista, F., & Bolzonella, D. (2019). Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas. Renewable and Sustainable Energy Reviews, 112(May), 1–10. https://doi.org/10.1016/j.rser.2019.05.040

Gopinath, K. P., Sankaranarayanan, A. R., & Nivedhitha, L. (2016). Platform Chemical Biorefinery and Agroindustrial Waste Management. In Platform Chemical Biorefinery. Elsevier Inc. https://doi.org/10.1016/b978-0-12-802980-0.00020-1

Gravalos, I., Xyradakis, P., Kateris, D., Gialamas, T., Bartzialis, D., & Giannoulis, K. (2016). An Experimental Determination of Gross Calorific Value of Different Agroforestry Species and Bio-Based Industry Residues. Natural Resources, 07(01), 57–68. https://doi.org/10.4236/nr.2016.71006

Gutierrez, J. P. (2018). Situación actual y escenarios para el desarrollo del biogás en México hacia 2024 y 2030. In Red Temática de Bioenergía del Conacyt.

Huiying, Y. (2021). Analysis of the advantages and disadvantages of waste incineration and discussion on the standard of incineration. Solid State Technology, 64(2), 6415–6421.

Hussain, Z., Mishra, J., & Vanacore, E. (2020). Waste to energy and circular economy: the case of anaerobic digestion. Journal of Enterprise Information Management, 33(4), 817–838. https://doi.org/10.1108/JEIM-02-2019-0049

IEA. (2018). National Policy Framework in France. https://ec.europa.eu/energy/en/topics/renewable-energy/national-action-plans

IEEP. (2022). Biogas3 project. http://www.biogas3.eu/esp/objetivos.html. Accessed: Oct 20, 2021.

Johnke, B. (1998). Emissions From Waste Incineration. Intergovernmental Panel on Climate Change, 455–468.

Marchet, C., Kerbiriou, M., & Limasset, A. (2021). Efficient exact associative structure for sequencing data. Bioinformatics, 1–11. https://doi.org/https://doi.org/10.1101/546309

Mejías-Brizuela, N., Orozco-Guillen, E., & Galaán-Hernández, N. (2016). Aprovechamiento de los residuos agroindustriales y su contribución al desarrollo sostenible de México Revista de Ciencias Ambientales y Recursos Naturales. Revista de Ciencias Ambientales y Recursos Naturales, 2(6), 27–41.

Mentzer, D. L. S. and J. T. (2003). A Framework for Conducting and Evaluating Research. In Journal of Accounting Literature (Vol. 22, pp. 130–167).

Miramontes-Martínez, L. R., Gomez-Gonzalez, R., Botello-Álvarez, J. E., Escamilla-Alvarado, C., Albalate-Ramírez, A., & Rivas-García, P. (2020). Semi-continuous anaerobic co-digestion of contenido vegetable waste and cow manure: A study of process stabilization. Revista Mexicana de Ingeniería Química, 19(3), 1117–1134. https://doi.org/10.24275/rmiq/proc920

Miramontes-Martínez, L. R., Rivas-García, P., Albalate-Ramírez, A., Botello-Álvarez, J. E., Escamilla-Alvarado, C., Gomez-Gonzalez, R., Alcalá-Rodríguez, M. M., Valencia-Vázquez, R., & Santos-López, I. A. (2021). Anaerobic co-digestion of fruit and vegetable waste: Synergy and process stability analysis. Journal of the Air and Waste Management Association, 71(5), 620–632. https://doi.org/10.1080/10962247.2021.1873206

Monroy-Oropeza, S. G., Jiménez-González, A., Gutiérrez-Rojas, M., & Medina-Moreno, S. A. (2020). Fundamentals in the design and scaling of biodigesters with mixing by hydraulic recirculation of wastewater for biogas production using dimensional analysis. Revista Mexicana de Ingeniería Química, 19(February), 81–99. https://doi.org/10.24275/rmiq/Bio1545

OECD. (2021). Green Economy and Energy Transition in Emerging Markets 2021.

OWD. (2019). Meat and Dairy Production. https://ourworldindata.org/meat-production. Accessed: Nov 29, 2021.

Paranhos da Costa, M. J. R., Huertas, S. M., Gallo, C., & Dalla Costa, O. A. (2012). Strategies to promote farm animal welfare in Latin America and their effects on carcass and meat quality traits. Meat Science, 92(3), 221–226. https://doi.org/10.1016/j.meatsci.2012.03.005

Ramos, E. A., Violeth, B. J., & Zumaqué, L. O. (2009). Evaluation of antagonism and multiplication the Trichoderma sp. in the middle static liquid banana substrate. Acta Biológica Colombiana, 14(3), 61–70.

Raugei, M., Kamran, M., & Hutchinson, A. (2020). A prospective net energy and environmental life-cycle assessment of the UK electricity grid. Energies, 13(9). https://doi.org/10.3390/en13092207

Ravindran, R., Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). A review on bioconversion of agro-industrial wastes to industrially important enzymes. Bioengineering, 5(4), 1–20. https://doi.org/10.3390/bioengineering5040093

Reyes Pinto, K., Meza-Contreras, V., Alegre-Orihuela, J. C., & Réategui-Romero, W. (2020). Bioavailability and Solubility of Heavy Metals and Trace Elements during Composting of Cow Manure and Tree Litter. Applied and Environmental Soil Science, 2020. https://doi.org/10.1155/2020/5680169

Rivas-Garcia, P., Botello-Alvarez, J. E., Abel Seabra, J. E., Da Silva Walter, A. C., & Estrada-Baltazar, A. (2015). Environmental implications of anaerobic digestion for manure management in dairy farms in Mexico: A life cycle perspective. Environmental Technology, 36(17), 2198–2209. https://doi.org/10.1080/09593330.2015.1024758

Rivas-García, P., Botello-Álvarez, J. E., Miramontes-Martínez, L. R., Cano-Gómez, J. J., & Rico-Martínez, R. (2020). New model of hydrolysis in the anaerobic co-digestion of bovine manure with vegetable waste: Modification of anaerobic digestion model no. 1. Rev. Mex. Ing. Quim., 19(1), 109–122. https://doi.org/10.24275/rmiq/Bio557

Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing, 5(1), 1–15. https://doi.org/10.1186/s40643-017-0187-z

SEMARNAT. (2006). NOM-052-SEMARNAT-2005, Que Establece Las Características, El Procedimiento De Identificación, Clasificación Y Los Listados De Los Residuos Peligrosos. Diario Oficial de La Federacion, 1–40.

Serrano, A. (2015). Tratamiento de Residuos y Subproductos Agroindustriales mediante Co-Digestión Anaerobia. 1–319. www.uco.es/publicaciones. Accessed: Dec 10, 2021.

Torrisi, B., Allegra, M., Amenta, M., Gentile, F., Rapisarda, P., Fabroni, S., & Ferlito, F. (2021). Physico-chemical and multielemental traits of anaerobic digestate from Mediterranean agro-industrial wastes and assessment as fertiliser for citrus nurseries. Waste Management, 131(June), 201–213. https://doi.org/10.1016/j.wasman.2021.06.007

Triola, M. F. (2007). Elementary Statistics (10th ed.). Editorial Pearson. Addison Wesley.

UN. (2021). Solid waste management | UNEP - UN Environment Programme. https://www.unep.org/explore-topics/resource-efficiency/what-we-do/cities/solid-waste-management. Accessed: Dec 02, 2021.

Vasco-Correa, J., Khanal, S., Manandhar, A., & Shah, A. (2018). Anaerobic digestion for bioenergy production: Global status, environmental and techno-economic implications, and government policies. Bioresource Technology, 247(August 2017), 1015–1026. https://doi.org/10.1016/j.biortech.2017.09.004

Wittmann, C., & Liao, J. C. (2016). Industrial Biotechnology: Products and Processes. Industrial Biotechnology: Products and Processes, 1–605. https://doi.org/10.1002/9783527807833

Yaashikaa, P. R., Senthil Kumar, P., & Varjani, S. (2022). Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresource Technology, 343, 126126. https://doi.org/10.1016/J.BIORTECH.2021.126126

Yang, J., Zhang, J., Zhang, J., Zhang, J., Yang, Y., & Zang, L. (2021). Roles of calcium-containing alkali materials on dark fermentation and anaerobic digestion: A systematic review. International Journal of Hydrogen Energy, 46(78), 38645–38662. https://doi.org/10.1016/j.ijhydene.2021.09.129

Published
2022-04-15
How to Cite
Galván-Arzola, U., Miramontes-Martínez, L., Escamilla-Alvarado, C., Botello-Álvarez, J., Alcalá-Rodríguez, M., Valencia-Vázquez, R., & Rivas-García, P. (2022). Anaerobic digestion of agro-industrial waste: Anaerobic lagoons in Latin America. Revista Mexicana De Ingeniería Química, 21(2), IA2680. https://doi.org/10.24275/rmiq/IA2680
Section
Environmental Engineering