Use of freeze-drying and convection as drying methods of the xoconostle by-product and the effect on its antioxidant properties

  • A.A. Morales-Tapia
  • F.E. González-Jiménez
  • G. Vivar-Vera
  • J.A. Del Ángel-Zumaya
  • M. Reyes-Reyes
  • L. Alamilla-Beltrán
  • J.E. Barojas-Zavaleta
  • B.L. Cooper-Bribiesca
  • J. Jiménez-Guzmán Facultad de Ciencias Químicas, Universidad Veracruzana
Keywords: betalain, total phenols, antioxidant capacity, drying kinetics, flow properties


In this study, the influence of the drying method (lyophilization and convection) on the techno-functional and antioxidant properties of the by-product of xoconostle cv. Cuaresmeño (Opuntia matudae) was evaluated. During convection drying, the effect of the temperature (60, 70 and 80 °C) was evaluated, resulting in drying times of 195, 165 and 120 minutes, respectively. The influence of the temperature on the equilibrium humidity was determined through the drying kinetics, which were affected by increasing the temperature from 60 to 80°C. The drying time for the by-product decreased, and equilibrium humidities of 0.04, 0.03 and 0.02 g water/g dry sample were reached for 60, 70 and 80 °C, respectively. Fick's second law was used along the experiments to determine the effective diffusivity, which ranged from 4.788 E-10–8.109 E-10 m2/s for the evaluated temperatures. Convective drying at 60°C proved to be a suitable alternative for the conservation of antioxidant capacity (88.07 ± 0.38% 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition) compared to drying at 70 and 80°C. These were 8% higher compared to the results for freeze drying. However, convective drying at 60°C is more convenient for the xoconostle by-products due to the cost-benefit ratio.


AACC (2011). 55-60.01: Guideline for determination of particle size distribution. St. Paul Minn: AACC International.

Aksoylu Özbek, Z., Günç Ergönül, P., and Taşkın, B. (2021). Microencapsulation technology: an alternative preservation method for opuntia spp. derived products and their bioactive compounds. In: Opuntia spp. Chemistry, Bioactivity and Industrial Applications, (Ramadan, M.F., Ayoub, T.E.M., and Rohn, S., eds), pp. 799–825. Springer, Cham.

Amagliani, L., O’Regan, J., Kelly, A. L., and O’Mahony, J. A. (2016). Physical and flow properties of rice protein powders. Journal of Food Engineering, 190, 1–9.

Arias-Rico, J., Cruz-cansino, N. S., Cámara, M., López-Froilán, R., Pérez-Rodríguez, M. L., Sánchez-Mata, M. de C., Jaramillo-Morales, O. A., Barrera-Gálvez, R., and Ramírez-Moreno, E. (2020). Study of Xoconostle (Opuntia spp.) powder as source. Foods, 9, 1–13.

ASABE. (2008). S319.4: Method of determining and expressing fineness of feed materials by sieving., Pub. L. No. St. Joseph, Mich.

Aymen Chaouch, M., and Benvenuti, S. (2020). The role of fruit by-products as bioactive compounds for intestinal health. Foods, 9(11), 1–22.

Azaka, O. A., Enibe, S. O., and Achebe, C. H. (2019). Determination of moisture diffusivity during drying of rectangular cassava pellets: Experimental and modeling study. Journal of Engineering and Applied Sciences, 15(1), 56–63.

Bensadón, S., Hervert-Hernández, D., Sáyago-Ayerdi, S. G., and Goñi, I. (2010). By-products of Opuntia ficus-indica as a source of antioxidant dietary fiber. Plant Foods for Human Nutrition, 65(3), 210–216.

Bhandari, B. (2013). Introduction to food powders. In: Handbook of Food Powders: Processes and Properties, (Bhandari, B., Bansal, N., Zhang, M., and Schuck, P., eds.), pp. 1–25. Woodhead Publishing.

Bhandari, B. R., and Adhikari, B. P. (2009). Water activity in food processing and preservation. In: Drying technologies in food processing, (Chen, X. D. and Mujumdar, A. S., eds.), pp. 55-86. John Wiley & Sons.

Bian, Q., Sittipod, S., Garg, A., and Ambrose, R. P. K. (2015). Bulk flow properties of hard and soft wheat flours. Journal of Cereal Science, 63, 88–94.

Brito, T. B. N., Pereira, A. P. A., Pastore, G. M., Moreira, R. F. A., Ferreira, M. S. L., and Fai, A. E. C. (2020). Chemical composition and physicochemical characterization for cabbage and pineapple by-products flour valorization. Lwt, 124, 1–19.

Calín-Sánchez, Á., Kharaghani, A., Lech, K., Figiel, A., Carbonell-Barrachina, Á. A., and Tsotsas, E. (2015). Drying kinetics and microstructural and sensory properties of black chokeberry (Aronia melanocarpa) as affected by drying method. Food and Bioprocess Technology, 8(1), 63–74.

Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., and Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies, 6(4), 420–428.

Chen, X. D. (2009). Food drying fundamentals. In: Drying technologies in food processing, (Chen, X. D. and Mujumdar, A. S., eds.), pp. 1-52. John Wiley & Sons.

Corrêa, S. C., Clerici, M. T. P. S., Garcia, J. S., Ferreira, E. B., Eberlin, M. N., and Azevedo, L. (2011). Evaluation of dehydrated marolo (Annona crassiflora) flour and carpels by freeze-drying and convective hot-air drying. Food Research International, 44(7), 2385–2390.

Costa, A. P. D., Hermes, V. S., Rios, A. O., and Flôres, S. H. (2017). Minimally processed beetroot waste as an alternative source to obtain functional ingredients. Journal of Food Science and Technology, 54(7), 2050–2058.

Darniadi, S., Ho, P., and Murray, B. S. (2007). Comparison of blueberry powder produced via foam-mat freeze- drying versus spray-drying: evaluation of foam and powder properties. Journal of Organizational Behavior, 28(3), 303–325.

De Oliveira, K. G., Queiroz, V. A. V., Carlos, L. de A., Cardoso, L. de M., Pinheiro-Sant’Ana, H. M., Anunciação, P. C., de Menezes, C. B., Silva, E. C. da, and Barros, F. (2017). Effect of the storage time and temperature on phenolic compounds of sorghum grain and flour. Food Chemistry, 216, 390–398.

Dima, C., Pətraşcu, L., Cantaragiu, A., Alexe, P., and Dima, Ş. (2016). The kinetics of the swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules. Food Chemistry, 195, 39–48.

Doymaz, I. (2005). Drying characteristics and kinetics of okra. Journal of Food Engineering, 69(3), 275–279.

Durazzo, A., Turfani, V., Narducci, V., Azzini, E., Maiani, G., and Carcea, M. (2014). Nutritional characterisation and bioactive components of commercial carobs flours. Food Chemistry, 153, 109–113.

Dussán-Sarria, S., Hurtado-Hurtado, D. L., Camacho-Tamayo, J. H., Dussán-Sarria, S., Hurtado-Hurtado, D. L., and Camacho-Tamayo, J. H. (2019). Granulometría, propiedades funcionales y propiedades de color de las harinas de quinua y chontaduro. Información Tecnológica, 30(5), 3–10.

Elhussein, E. A. A., and Şahin, S. (2018). Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods. Heat and Mass Transfer, 54(7), 1901–1911.

Ernesto, J., and Ortiz, D. (2005). Propuesta metodológica para determinar el potencial de humedad de un material granular a partir de la humedad relativa. Ingeniería y Competitividad, 7, 73–79.

Espino-Manzano, S. O., León-López, A., Aguirre-Álvarez, G., González-Lemus, U., Prince, L., and Campos-Montiel, R. G. (2020). Application of nanoemulsions (W/O) of extract of Opuntia oligacantha C.F. först and orange oil in gelatine films. Molecules, 25(15), 1–14.

Fernández-Luqueño, F., Medina- Pérez, G., Pérez-Soto, E., Espino-Manzano, S., Peralta-Adauto, L., Pérez-Ríos, S., and Capos-Montiel, R. (2021). Bioactive compounds of Opuntia spp. acid fruits: Micro and nano-emulsified extracts and applications in nutraceutical foods. Molecules, 26(6429), 1–12.

Feugang, J. M., Konarski, P., Zou, D., Stintzing, F. C., and Zou, C. (2006). Nutritional and medicinal use of Cactus pear (Opuntia spp.) cladodes and fruits Jean. Frontiers in Bioscience, 11(1), 2574–2589.

Figueroa-Garcia, E., Segura-Castruita, M. A., Luna-Olea, F. M., Vázquez-Vuelvas, O. F., and Chávez-Rodríguez, A. M. (2021). Design of a hybrid solar collector with a flat plate solar collector and induction heating: evaluation and modelling with principal components regression. Revista Mexicana de Ingeniería Química, 20(3), 1–14.

García-Armenta, E., and Gutiérrez-López, G. F. (2022). Fractal microstructure of foods. Food Engineering Reviews, 1–19.

Gawałek, J., Domian, E., Ryniecki, A., and Bakier, S. (2017). Effects of the spray drying conditions of chokeberry (Aronia melanocarpa L.) juice concentrate on the physicochemical properties of powders. International Journal of Food Science and Technology, 52(9), 1933–1941.

Giraldo-Zuniga, A. D., Arévalo-Pinedo, A., Silva, A. F., Silva, P. F., Valdes-Serra, J. C., and Pavlak, M. C. de M. (2010). Datos experimentales de la cinética del secado y del modelo matemático para pulpa de cupuaçu (Theobroma grandiflorum) en rodajas. Ciência e Tecnologia de Alimentos, 30(1), 179–182.

González-Jiménez, F. E., Salazar-Montoya, J. A., Calva-Calva, G., and Ramos-Ramírez, E. G. (2018). Phytochemical characterization, in vitro antioxidant activity, and quantitative analysis by micellar electrokinetic chromatography of hawthorn (Crataegus pubescens) Fruit. Journal of Food Quality, 2018, 1-11.

Gopinathan, M., Yusof, Y. A., and Pui, L. P. (2020). Effects of different drying methods on the physicochemical and antioxidant content of “cempedak” (Artocarpus Integer L.) powder. Journal of Food Processing and Preservation, 44(12), 1–30.

Guiné, R. P. F., Pinho, S., and Barroca, M. J. (2011). Study of the convective drying of pumpkin (Cucurbita maxima). Food and Bioproducts Processing, 89(4), 422–428.

Guzmán-Maldonado, S. H., Morales-Montelongo, A. L., Mondragón-Jacobo, C., Herrera-Hernández, G., Guevara-Lara, F., and Reynoso-Camacho, R. (2010). Physicochemical, nutritional, and functional characterization of fruits xoconostle (opuntia matudae) pears from central-México region. Journal of Food Science, 75(6), C485–C492.

Hernández-Fuentes, A. D., Trapala-Islas, A., Gallegos-Vásquez, C., Campos-Montiel, R. G., Pinedo-Espinoza, J. M., and Guzmán-Maldonado, S. H. (2015a). Physicochemical variability and nutritional and functional characteristics of xoconostles (Opuntia spp.) accessions from Mexico. Fruits, 70(2), 109–116.

Hernández-Fuentes, A. D., Trapala-Islas, A., Gallegos-Vásquez, C., Campos-Montiel, R. G., Pinedo-Espinoza, J. M., and Guzmán-Maldonado, S. H. (2015b). Physicochemical variability and nutritional and functional characteristics of xoconostles (Opuntia spp.) accessions from Mexico. EDP Sciences, 70(2), 109–116.

Horwitz, W., and Latimer, G. W. (2005). Official methods of analysis of AOAC International. (M. Gaithersburg and A. International, eds.).

Izli, N., and Polat, A. (2019). Freeze and convective drying of quince (Cydonia oblonga Miller.): Effects on drying kinetics and quality attributes. Heat and Mass Transfer, 55(5), 1317–1326.

Jiménez-Guzmán, J. (2011). Secado y descascarillado simultáneo de café pergamino en un secado de lecho por fuente con tubo central. Tesis de maestría en Ciencias en Alimentos. Instituto Politécnico Nacional, México.

Joardder, M. U. H., Kumar, C., and Karim, M. A. (2017). Food structure: Its formation and relationships with other properties. Critical Reviews in Food Science and Nutrition, 57(6), 1190–1205.

Kabuo, N., Onuegbu, N., Nwosu, J., Peter-Ikechukwu, A. I., Udeozor, L., and Howells-Nworie, I. (2014). Effects of sugars on the drying of some local fruits and their importance on baked products-bread and cake. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(3), 99–106.

Kumar, C., Millar, G. J., and Karim, M. A. (2015). Effective diffusivity and evaporative cooling in convective drying of food material. Drying Technology, 33(2), 227–237.

Leturia, M., Benali, M., Lagarde, S., Ronga, I., and Saleh, K. (2014). Characterization of flow properties of cohesive powders: A comparative study of traditional and new testing methods. Powder Technology, 253, 406–423.

López-Legarda, X., Taramuel-Gallardo, A., Arboleda-Echavarria, C., Segura-Sánchez, F., and Restrepo-Betancur, L. F. (2017). Comparación de métodos que utilizan ácido sulfúrico para la determinación de azúcares totales. Revista Cubana de Quím., 29(2), 180-198.

Macedo, L. L., Vimercati, W. C., da Silva Araújo, C., Saraiva, S. H., and Teixeira, L. J. Q. (2020). Effect of drying air temperature on drying kinetics and physicochemical characteristics of dried banana. Journal of Food Process Engineering, 43(9), 1–10.

Martínez-Jiménez, F., Rodríguez-Sandoval, E., and Hernández-Gómez, M. (2015). Impact of carboxymethylcellulose and water addition on baking quality and physicochemical properties of gluten-free bread. Revista U.D.C.A Actualidad & Divulgación Científica, 18(2), 445–454.

Mayor, L., Moreira, R., and Sereno, A. M. (2011). Shrinkage, density, porosity and shape changes during dehydration of pumpkin (Cucurbita pepo L.) fruits. Journal of Food Engineering, 103(1), 29–37.

Medina-Torres, N., Cuevas-Bernardino, J. C., Ayora-Talavera, T., Patrón-Vázquez, J. A., Rodríguez-Buenfil, I., and Pacheco, N. (2021). Changes in the physicochemical, rheological, biological, and sensorial properties of habanero Chili pastes affected by ripening stage, natural preservative and thermal processing. Revista Mexicana de Ingeniera Quimica, 20(1), 195–212.

Michalska, A., Wojdyło, A., Lech, K., Łysiak, G. P., and Figiel, A. (2017). Effect of different drying techniques on physical properties, total polyphenols and antioxidant capacity of blackcurrant pomace powders. LWT, 78, 114–121.

Michalska, A., Wojdyło, A., Majerska, J., Lech, K., and Brzezowska, J. (2019). Qualitative and quantitative evaluation of heat-induced changes in polyphenols and antioxidant capacity in Prunus domestica L. by-products. Molecules, 24(16), 1–16.

Miranda, M., Maureira, H., Rodríguez, K., and Vega-Gálvez, A. (2009). Influence of temperature on the drying kinetics, physicochemical properties, and antioxidant capacity of Aloe Vera (Aloe Barbadensis Miller) gel. Journal of Food Engineering, 91(2), 297–304.

Miranda, M., Vega-Gálvez, A., López, J., Parada, G., Sanders, M., Aranda, M., Uribe, E., and Di Scala, K. (2010). Impact of air-drying temperature on nutritional properties, total phenolic content and antioxidant capacity of quinoa seeds (Chenopodium quinoa Willd.). Industrial Crops and Products, 32(3), 258–263.

Moondra, S., Maheshwari, R., Taneja, N., Tekade, M., and Tekadle, R. K. (2018). Bulk level properties and its role in formulation development and processing. Dosage Form Design Parameters, 2, 221–256.

Morales, P., Barros, L., Ramírez-Moreno, E., Santos-Buelga, C., and Ferreira, I. C. F. R. (2015). Xoconostle fruit (opuntia matudae scheinvar cv. rosa) by-products as potential functional ingredients. Food Chemistry, 185, 289–297.

Morales, P., Ramírez-Moreno, E., Sanchez-Mata, M. de C., Carvalho, A. M., and Ferreira, I. C. F. R. (2012). Nutritional and antioxidant properties of pulp and seeds of two xoconostle cultivars (Opuntia joconostle F.A.C. Weber ex Diguet and Opuntia matudae Scheinvar) of high consumption in Mexico. Food Research International, 46(1), 279–285.

Mota, C. L., Luciano, C., Dias, A., Barroca, M. J., and Guiné, R. P. F. (2010). Convective drying of onion: Kinetics and nutritional evaluation. Food and Bioproducts Processing, 88(2–3), 115–123.

Osorio-Esquivel, O., Alicia-Ortiz-Moreno, Álvarez, V. B., Dorantes-Álvarez, L., and Giusti, M. M. (2011). Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits. Food Research International, 44(7), 2160–2168.

Ouaabou, R., Ennahli, S., Di Lorenzo, C., Hanine, H., Bajoub, A., Lahlali, R., Idlimam, A., Ait Oubahou, A., and Mesnaoui, M. (2021). Hygroscopic properties of sweet cherry powder: Thermodynamic properties and microstructural changes. Journal of Food Quality, 2021,1–11.

Palzer, S., Dubois, C., and Gianfrancesco, A. (2012). Generation of product structures during drying of food products. Drying Technology, 30(1), 97–105.

Patwa, A., Malcolm, B., Wilson, J., and Ambrose, R. P. K. (2014). Particle size analysis of two distinct classes of wheat flour by sieving. Transactions of the ASABE, 57(1), 151–159.

Pereyra-Castro, S. C., Alamilla-Beltrán, L., Villalobos-Castillejos, F., Porras-Saavedra, J., Pérez-Pérez, V., Gutiérrez-López, G. F., and Jiménez-Aparicio, A. R. (2018). Microfluidization and atomization pressure during microencapsulation process: Microstructure, hygroscopicity, dissolution and flow properties. LWT, 96, 378–385.

Pérez-Alonso, C., Campos-Montiel, R. G., Morales-Luna, E., Reyes-Munguía, A., Aguirre-Álvarez, G., and Pimentel-González, D. J. (2015). Estabilización de compuestos fenólicos de Opuntia oligacantha Först por microencapsulación con agave SAP (aguamiel). Revista Mexicana de Ingeniería Química, 14(3), 579–588.

Prachayawarakorn, S., Tia, W., Plyto, N., and Soponronnarit, S. (2008). Drying kinetics and quality attributes of low-fat banana slices dried at high temperature. Journal of Food Engineering, 85(4), 509–517.

Ramírez, J., Cortés, M., and Hincapié, C. A. (2019). Optimization of the process of freeze-drying and comparison with convective drying of Russian tarragon (Artemisia dracunculus L,). Acta Agronómica, 68(3), 167–174.

Ratti, C. (2013). Freeze drying for food powder production. In: Handbook of Food Powders: Processes and Properties, (Bhandari, B., Bansal, N., Zhang, M., and Schuck, P., eds.), pp. 57–84. Woodhead Publishing Limited.

Re, R., Pelegrini, N., Anna, P., Pannala, A., Yang, M., and Rice-Evans, C. (1999). Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radical Biology & Medicine, 26, 1231–1237.

Ribeiro, L. C., Da Costa, J. M. C., and Afonso, M. R. A. (2016). Hygroscopic behavior of lyophilized acerola pulp powder. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, 269–274.

Roberts, J. S., Kidd, D. R., and Padilla-Zakour, O. (2008). Drying kinetics of grape seeds. Journal of Food Engineering, 89(4), 460–465.

Ruiz-Gutiérrez, M. G., Amaya-Guerra, C. A., Quintero-Ramos, A., Pérez-Carrillo, E., Ruiz-Anchondo, T. D. J., Báez-González, J. G., and Meléndez-Pizarro, C. O. (2015). Effect of extrusion cooking on bioactive compounds in encapsulated red cactus pear powder. Molecules, 20 (5), 8875-8892.

Sagar, V. R., and Suresh Kumar, P. (2010). Recent advances in drying and dehydration of fruits and vegetables: A review. Journal of Food Science and Technology, 47(1), 15–26.

Salcedo-Mendoza, J. G., Contreras-Lozano, K., García-López, A., and Fernandez-Quintero, A. (2016). Modelado de la cinética de secado del afrecho de yuca (Manihot esculenta Crantz). Revista Mexicana de Ingeniería Química, 15(3), 883–891.

Sant’Anna, V., Gurak, P. D., Ferreira Marczak, L. D., and Tessaro, I. C. (2013). Tracking bioactive compounds with colour changes in foods - A review. Dyes and Pigments, 98(3), 601–608.

Sedej, I., Sakač, M., Mandić, A., Mišan, A., Tumbas, V., and Hadnadev, M. (2011). Assessment of antioxidant activity and rheological properties of wheat and buckwheat milling fractions. Journal of Cereal Science, 54(3), 347–353.

Shuen, G. W., Yi, L. Y., Ying, T. S., Von Yu, G. C., Binti Yusof, Y. A., and Phing, P. L. (2021). Effects of drying methods on the physicochemical properties and antioxidant capacity of Kuini powder. Brazilian Journal of Food Technology, 24, 1–14.

Shukla, S. (2011). Freeze Drying Process: a Review. International Journal of Pharmaceutical Sciences and Research, 2(12), 3061–3068.

Souza, A. L. R., Hidalgo-Chávez, D. W., Pontes, S. M., Gomes, F. S., Cabral, L. M. C., and Tonon, R. V. (2018). Microencapsulation by spray drying of a lycopene-rich tomato concentrate: Characterization and stability. LWT, 91, 286–292.

Stasiak, M., Molenda, M., Opaliñski, I., and Błaszczak, W. (2013). Mechanical properties of native maize, wheat, and potato starches. Czech Journal of Food Sciences, 31(4), 347–354.

Vega Gálvez, A., Tello Ireland, C., and Lemus Mondaca, R. (2007). Simulación matemática del proceso de secado de la gracilaria chilena (Gracilaria Chilensis). Ingeniare. Revista Chilena de Ingeniería, 15(1), 55-64.

Veras, A. O. M., Béttega, R., Freire, F. B., Barrozo, M. A. S., and Freire, J. T. (2012). Drying kinetics, structural characteristics and vitamin C retention of dedo-de-moça pepper (capsicum baccatum) during convective and freeze drying. Brazilian Journal of Chemical Engineering, 29(4), 741–750.

Virgen-Navarro, L., Herrera-López, E. J., Espinosa-Andrews, H., Guatemala-Morales, G. M., Corona-González, R. I., and Arriola-Guevara, E. (2016). Estimación del coeficiente de difusividad durante el tostado de café en un lecho fuente utilizando un modelo difuso. Revista Mexicana de Ingeniera Quimica, 15(2), 513–524.

Zárate-Castillo, G., Huerta-Pérez, M. A., Rodríguez-Alcalá, O., Hernández-Loyo, L., Roque-Martinez, U., and Damián-Heráandez, X. (2018). Design and contruction of a hybrid tray dehydrator. Revista Agro Productividad, 11, 87–91.

Zulueta, A., Esteve, M. J., and Frígola, A. (2009). ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chemistry, 114(1), 310–316.

How to Cite
Morales-Tapia, A., González-Jiménez, F., Vivar-Vera, G., Del Ángel-Zumaya, J., Reyes-Reyes, M., Alamilla-Beltrán, L., Barojas-Zavaleta, J., Cooper-Bribiesca, B., & Jiménez-Guzmán, J. (2022). Use of freeze-drying and convection as drying methods of the xoconostle by-product and the effect on its antioxidant properties. Revista Mexicana De Ingeniería Química, 21(2), Alim2692.
Food Engineering

Most read articles by the same author(s)

1 2 3 > >>