Hydrodynamics evaluation of an internal-loop airlift reactor with Newtonian and shear-thinning fluids: Experimentation vs CFD simulation

  • R. Guadarrama-Pérez Posgrado en Ciencias Naturales e Ingeniería, División de Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana-Cuajimalpa https://orcid.org/0000-0002-4804-7874
  • V.E. Márquez-Baños Departamento de Procesos y Tecnología, División de Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana-Cuajimalpa https://orcid.org/0000-0001-5045-5044
  • J.J. Valencia-López Departamento de Procesos y Tecnología, División de Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana-Cuajimalpa
  • V. Sánchez-Vázquez Departamento de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa https://orcid.org/0000-0001-5370-7980
  • G. Martínez-De Jesús Departamento de Química y Bioquímica. Tecnológico de Estudios Superiores de Ecatepec https://orcid.org/0000-0003-1707-1502
  • J. Ramirez Munoz Universidad Autónoma Metropolitana-Azcapotzalco https://orcid.org/0000-0003-1780-6185
  • M. Gutiérrez-Rojas In memoriam
Keywords: Internal-loop airlift reactor, Shear-thinning fluids; Computational Fluid Dynamics; kLa; Flow Pattern.


The hydrodynamics of an internal-loop airlift reactor was numerically and experimentally characterized. The gas holdup, liquid velocity, shear rate, flow pattern and volumetric oxygen transfer coefficient (kLa) were evaluated as a function of the air velocity and medium rheology. Tap water and CMC solutions were used as Newtonian and non-Newtonian fluids, respectively. The standard model was employed for modeling turbulence, and unsteady three-dimensional simulations with the Euler–Euler model were performed. Gas holdup, liquid velocity and kLa measurements were performed for validating simulations. An increase in bubble coalescence and a decrease in kLa was observed with CMC solutions. The presence of recirculation loops inside the riser for CMC solutions is reported, which was not observed with tap water. The higher the CMC concentration, the larger the recirculation region seems to be. Results show that recirculation loops play a substantial role in the reactor’s hydrodynamic performance, and it turns out that the gas holdup in the riser increases with increasing the CMC concentration.


Bach, C., Yang, J., Larsson, H., Stocks, S.M., Gernaey, K.V., Albaek, M.O. y Krühne, U. (2017). Evaluation of mixing and mass transfer in a stirred pilot scale bioreactor utilizing cfd. Chem. Eng. Sci. 171, 19. https://doi.org/10.1016/j.ces.2017.05.001

Bandyopadhyay, B., Humphrey, A.E. y Taguchi, H. (1967). Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation systems. Biotechnol. Bioeng. 9, 533. https://doi.org/10.1002/bit.260090408

Bowen, R. (1976). Theory of mixtures, aceringen. Continuum Physics, Academic Press, New York.

Cerri, M.O., Futiwaki, L., Jesus, C.D.F., Cruz, A.J.G. y Badino, A.C. (2008). Average shear rate for non-newtonian fluids in a concentric-tube airlift bioreactor. Biochem. Eng. J. 39, 51. https://doi.org/10.1016/j.bej.2007.08.009

Clift, R., Grace, J.R., Weber, M.E. y Weber, M.F. (1978). Bubbles, drops, and particles Academic Press,

Chen, Z., Jiang, Z., Zhang, X. y Zhang, J. (2016). Numerical and experimental study on the co2 gas–liquid mass transfer in flat-plate airlift photobioreactor with different baffles. Biochem. Eng. J. 106, 129. https://doi.org/10.1016/j.bej.2015.11.011

Chisti, M.Y. (1989). Airlift bioreactors Elsevier Applied Science,

Choi, K.H. y Lee, W.K. (1993). Circulation liquid velocity, gas holdup and volumetric oxygen transfer coefficient in external-loop airlift reactors. J. Chem. Technol. Biotechnol. 56, 51. https://doi.org/10.1002/jctb.280560110

de Jesus, S.S., Moreira Neto, J. y Maciel Filho, R. (2017). Hydrodynamics and mass transfer in bubble column, conventional airlift, stirred airlift and stirred tank bioreactors, using viscous fluid: A comparative study. Biochem. Eng. J. 118, 70. https://doi.org/10.1016/j.bej.2016.11.019

Deng, Z., Wang, T., Zhang, N. y Wang, Z. (2010). Gas holdup, bubble behavior and mass transfer in a 5m high internal-loop airlift reactor with non-newtonian fluid. Chem. Eng. J. 160, 729. https://doi.org/10.1016/j.cej.2010.03.078

Doran, P.M. (2013) Preface to the second edition. En: Bioprocess engineering principles (second edition), (P.M. Doran,ed.), Pp. vii. Academic Press, London.

Du, W., Bao, X., Xu, J. y Wei, W. (2006). Computational fluid dynamics (cfd) modeling of spouted bed: Assessment of drag coefficient correlations. Chem. Eng. Sci. 61, 1401. https://doi.org/10.1016/j.ces.2005.08.013

Esperança, M.N., Buffo, M.M., Mendes, C.E., Rodriguez, G.Y., Béttega, R., Badino, A.C. y Cerri, M.O. (2022). Linking maximal shear rate and energy dissipation/circulation function in airlift bioreactors. Biochem. Eng. J. 178, 108308. https://doi.org/10.1016/j.bej.2021.108308

Fischer, J., Kumazawa, H. y Sada, E. (1994). On the local gas holdup and flow pattern in standard-type bubble columns. Chem. Eng. Process. Process Intensif. 33, 7. https://doi.org/10.1016/0255-2701(94)87002-0

Gavrilescu, M. y Tudose, R.Z. (1997). Hydrodynamics of non-newtonian liquids in external-loop airlift bioreactors. Bioprocess. Eng. 18, 17. https://doi.org/10.1007/s004490050405

Gluz, M.D. y Merchuk, J.C. (1996). Modified airlift reactors: The helical flow promoters. Chem. Eng. Sci. 51, 2915. https://doi.org/10.1016/0009-2509(96)00174-1

Godbole, S.P., Honath, M.F. y Shah, Y.T. (1982). Holdup structure in highly viscous newtonian and non-newtonian liquids in bubble columns. Chem. Eng. Commun. 16, 119. https://doi.org/10.1080/00986448208911090

Grace, J. y TH, N. (1976). Shapes and velocities of single drops and bubbles moving freely through immiscible liquids.

Han, M., Sha, Z., Laari, A. y Koiranen, T. (2017). Cfd-pbm coupled simulation of an airlift reactor with non-newtonian fluid. Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 72, 26.

Higbie, R. (1935). The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans. AIChE 31, 365.

Huang, Q., Yang, C., Yu, G. y Mao, Z.-S. (2010). Cfd simulation of hydrodynamics and mass transfer in an internal airlift loop reactor using a steady two-fluid model. Chem. Eng. Sci. 65, 5527. https://doi.org/10.1016/j.ces.2010.07.021

Hwang, S.-J. y Cheng, Y.-L. (1997). Gas holdup and liquid velocity in three-phase internal-loop airlift reactors. Chem. Eng. Sci. 52, 3949. https://doi.org/10.1016/S0009-2509(97)88931-2

Jia, X., Wen, J., Feng, W. y Yuan, Q. (2007). Local hydrodynamics modeling of a gas−liquid−solid three-phase airlift loop reactor. Ind. Eng. Chem. 46, 5210. https://doi.org/10.1021/ie061697l

Jianping, W. y Shonglin, X. (1998). Local hydrodynamics in a gas-liquid-solid three-phase bubble column reactor. Chem. Eng. J. 70, 81. https://doi.org/10.1016/S1385-8947(97)00120-4

Jiménez-González, A., Vargas-García, V., Lizardi-Jiménez, M.A. y Medina-Moreno, S.A. (2015). Evaluación de coeficientes volumétricos de transferencia de hidrocarburos poliaromáticos y oxígeno en sistemas multifásicos (líquido-líquido y líquido-líquido-gas): Efecto de la carga volumétrica de solventes biocompatibles. Rev. Mex. Ing. Chim. 14, 723.

Kadic, E. y Heindel, T.J. (2014). Airlift bioreactors. An Introduction to Bioreactor Hydrodynamics and Gas‐Liquid Mass Transfer, 168. https://doi.org/10.1002/9781118869703.ch8

Katz, J. y Meneveau, C. (1996). Wake-induced relative motion of bubbles rising in line. Int. J. Multiphase Flow 22, 239. https://doi.org/10.1016/0301-9322(95)00081-X

Lim, J.-S., Kim, J.-H., Kim, C. y Kim, S.-W. (2002). Morphological and rheological properties of culture broth of cephalosporium acremonium m25. Korea-Australia Rheology Journal 14, 11.

Lizardi-Jiménez, M.A. y Gutiérrez-Rojas, M. (2011). Assessment of the local hydrodynamic zones in a three-phase airlift reactor: Looking for the lowest liquid-phase re. Rev. Mex. Ing. Chim. 10, 59. https://doi.org/10.4090/juee.2008.v2n2.033040

Lizardi-Jiménez, M.A., Leal-Bautista, R.M., Ordaz, A. y Reyna-Velarde, R. (2015). Airlift bioreactors for hydrocarbon water pollution remediation in a tourism development pole. Desalin. Water Treat. 54, 44. http://doi.org/10.1080/19443994.2013.876670

Lu, W.-J., Hwang, S.-J. y Chang, C.-M. (1995). Liquid velocity and gas holdup in three-phase internal loop airlift reactors with low-density particles. Chem. Eng. Sci. 50, 1301. https://doi.org/10.1016/0009-2509(95)98842-3

Luo, H.-P. y Al-Dahhan, M.H. (2008). Local characteristics of hydrodynamics in draft tube airlift bioreactor. Chem. Eng. Sci. 63, 3057. https://doi.org/10.1016/j.ces.2008.03.015

Luo, H.-P. y Al-Dahhan, M.H. (2008). Macro-mixing in a draft-tube airlift bioreactor. Chem. Eng. Sci. 63, 1572. https://doi.org/10.1016/j.ces.2007.11.027

Medina-Moreno, S.A., Conde-Báez, L., Jiménez-González, A., Aguilar-López, R., Rodríguez-Vázquez, R. y Tec-Caamal, E.N. (2020). Modelling hexadecane uptake strategies of a rhizospheric bacterial consortium under different hydrodynamic draft-tube airlift reactor conditions. Biochem. Eng. J. 160, 107611. https://doi.org/10.1016/j.bej.2020.107611

Mendes, C.E. y Badino, A.C. (2016). Hydrodynamics of newtonian and non-newtonian liquids in internal-loop airlift reactors. Biochem. Eng. J. 109, 137. https://doi.org/10.1016/j.bej.2016.01.007

Merchuk, J.C. y Garcia Camacho, F. (2010). Bioreactors: Airlift reactors. Encyclopedia of Industrial Biotechnology, 887. http://doi.org/10.1002/9780470054581.eib144

Mohajerani, M., Mehrvar, M. y Ein-Mozaffari, F. (2012). Cfd analysis of two-phase turbulent flow in internal airlift reactors. Can. J. Chem. Eng. 90, 1612. https://doi.org/10.1002/cjce.20674

Nalband, M. y Jalilnejad, E. (2019). 3d cfd simulation of gas hold-up and mass transfer in a modified airlift reactor with net draft tube. International Journal of Chemical Reactor Engineering 17. https://doi:10.1515/ijcre-2019-0060

Popović, M. y Robinson, C.W. (1988). External-circulation-loop airlift bioreactors: Study of the liquid circulating velocity in highly viscous non-newtonian liquids. Biotechnol. Bioeng. 32, 301. https://doi.org/10.1002/bit.260320307

Ramírez-Muñoz, J., Salinas-Rodríguez, E., Soria, A. y Gama-Goicochea, A. (2011). Hydrodynamic interaction on large-reynolds-number aligned bubbles: Drag effects. Nucl. Eng. Des. 241, 2371. https://doi.org/10.1016/j.nucengdes.2011.03.051

Roco, M.C. (1993). Particulate two-phase flow Butterworth-Heinemann, Boston.

Rohatgi, A. (2017) Webplotdigitizer. Austin, Texas, USA.

Sánchez-Vázquez, V., González, I. y Gutiérrez-Rojas, M. (2015). Electric field as pretreatment to enhance the activity of a whole-cell biocatalyst for hydrocarbon degradation in contaminated water. Chem. Eng. J. 260, 37. https://doi.org/10.1016/j.cej.2014.08.036

Sánchez-Vázquez, V., Shirai, K., González, I. y Gutiérrez-Rojas, M. (2017). Fungal biocatalyst activated by an electric field: Improved mass transfer and non-specificity for hydrocarbon degradation in an airlift bioreactor. J. Hazard. Mater. 337, 62. https://doi.org/10.1016/j.jhazmat.2017.05.001

Sánchez-Vázquez, V., Shirai, K., González, I. y Gutiérrez-Rojas, M. (2018). Polycyclic aromatic hydrocarbon-emulsifier protein produced by aspergillus brasiliensis (niger) in an airlift bioreactor following an electrochemical pretreatment. Bioresour. Technol. 256, 408. https://doi.org/10.1016/j.biortech.2018.02.043

Sandoval-Herazo, E., Saucedo-Rivalcoba, V., Gutiérrez-Rivera, B., Hernández-Martínez, R. y Lizardi-Jiménez, M. (2020). Diagnostic hydrocarbon pollution in veracruz beaches and airlift bioreactor as suggestion of remediation. Rev. Mex. Ing. Chim. 19, 1227. https://doi.org/10.24275/rmiq/Bio851

Särkelä, R., Eerikäinen, T., Pitkänen, J.-P. y Bankar, S. (2019). Mixing efficiency studies in an airlift bioreactor with helical flow promoters for improved reactor performance. Chem. Eng. Process. Process Intensif. 137, 80. https://doi.org/10.1016/j.cep.2019.02.006

Schiller, L. (1933). A drag coefficient correlation. Zeit. Ver. Deutsch. Ing. 77, 318.

Schlötelburg, C., Popovic, M., Gluz, M. y Merchuk, J.C. (1999). Characterization of an airlift reactor with helical flow promoters. Can. J. Chem. Eng. 77, 804. http://doi.org/10.1002/cjce.5450770504

Schweitzer, J.M., Bayle, J. y Gauthier, T. (2001). Local gas hold-up measurements in fluidized bed and slurry bubble column. Chem. Eng. Sci. 56, 1103. https://doi.org/10.1016/S0009-2509(00)00327-4

Šimčík, M., Mota, A., Ruzicka, M.C., Vicente, A. y Teixeira, J. (2011). Cfd simulation and experimental measurement of gas holdup and liquid interstitial velocity in internal loop airlift reactor. Chem. Eng. Sci. 66, 3268. https://doi.org/10.1016/j.ces.2011.01.059

Sokolichin, A., Eigenberger, G. y Lapin, A. (2004). Simulation of buoyancy driven bubbly flow: Established simplifications and open questions. AlChE J. 50, 24. http://doi.org/10.1002/aic.10003

Teli, S.M. y Mathpati, C.S. (2021). Experimental and numerical study of gas-liquid flow in a sectionalized external-loop airlift reactor. Chin. J. Chem. Eng. 32, 39. https://doi.org/10.1016/j.cjche.2020.10.023

Utiger, M., Guy, C., Stuber, F., Duquenne, A.-M. y Delmas, H. (1999). Local measurements for the study of external loop airlift hydrodynamics. Can. J. Chem. Eng. 77, 375. http://doi.org/10.1002/cjce.5450770225

Valdivia-Rivera, S., Lizardi-Jiménez, M.A., Medina-Moreno, S.A. y Sánchez-Vázquez, V. (2019). Multiphase partitioning airlift bioreactors: An alternative for hydrocarbon biodegradation in contaminated environments. Advances and Applications of Partitioning Bioreactors, 275.

van Baten, J.M., Ellenberger, J. y Krishna, R. (2003). Hydrodynamics of internal air-lift reactors: Experiments versus cfd simulations. Chem. Eng. Process. Process Intensif. 42, 733. https://doi.org/10.1016/S0255-2701(02)00076-4

Verlaan, P. (1987) Modelling and characterization of an airlift-loop bioreactor. Verlaan, S.l.

Verlaan, P., Tramper, J., Van't Reit, K. y Luyben, K.C.H.A.M. (1986). A hydrodynamic model for an airlift-loop bioreactor with external loop. Chem. Eng. J. 33, B43. https://doi.org/10.1016/0300-9467(86)80052-1

Wang, T., Wang, J. y Jin, Y. (2006). A cfd–pbm coupled model for gas–liquid flows. AlChE J. 52, 125. http://doi.org/10.1002/aic.10611

Wang, X., Jia, X. y Wen, J. (2011). Transient cfd modeling of toluene waste gas biodegradation in a gas–liquid–solid three-phase airlift loop reactor by immobilized pseudomonas putida. Chem. Eng. J. 172, 735. https://doi.org/10.1016/j.cej.2011.06.052

Wei, C., Xie, B., Xiao, H. y Wang, D. (2000). Volumetric mass transfer coefficient of oxygen in an internal loop airlift reactor with a convergence-divergence draft tube. Chem. Eng. Technol. 23, 597. http://doi.org/10.1002/1521-4125(200007)23:7<597::aid-ceat597>3.0.co;2-y

Wu, X. y Merchuk, J.C. (2003). Measurement of fluid flow in the downcomer of an internal loop airlift reactor using an optical trajectory-tracking system. Chem. Eng. Sci. 58, 1599. https://doi.org/10.1016/S0009-2509(02)00662-0

Xu, T., Jiang, X., Yang, N. y Zhu, J. (2015). Cfd simulation of internal-loop airlift reactor using emms drag model. Particuology 19, 124. https://doi.org/10.1016/j.partic.2014.04.016

Young, M.A., Carbonell, R.G. y Ollis, D.F. (1991). Airlift bioreactors: Analysis of local two-phase hydrodynamics. AlChE J. 37, 403. https://doi.org/10.1002/aic.690370311

How to Cite
Guadarrama-Pérez, R., Márquez-Baños, V., Valencia-López, J., Sánchez-Vázquez, V., Martínez-De Jesús, G., Ramirez Munoz, J., & Gutiérrez-Rojas, M. (2022). Hydrodynamics evaluation of an internal-loop airlift reactor with Newtonian and shear-thinning fluids: Experimentation vs CFD simulation. Revista Mexicana De Ingeniería Química, 21(2), Bio2694. https://doi.org/10.24275/rmiq/Bio2694