Importance of the C/N-ratio on biomass production and antimicrobial activity from marine bacteria Pseudoalteromonas sp
Abstract
The main objective of this study was to investigate from the physiological point of view, the influence that nitrogen and carbon sources have on the biomass production and activity of the antimicrobial protein of Pseudoalteromonas sp. The impact of the change in the medium initial C/N-ratio on biomass production and antimicrobial activity against S. aureus MRSA was evaluated using two different carbon sources (glucose or citrate) and a fixed concentration of NH4Cl as a nitrogen source. The change in total nitrogen concentration in the medium was evaluated using organic or inorganic nitrogen sources (NH4Cl or yeast extract-peptone) while a fixed glucose concentrations was present.
The results showed that the increase in C/N-ratio stimulated biomass production but inhibited antimicrobial activity regardless of the nature of the carbon source. Similarly, the biomass profile and antibiotic activity were dependent in the variation of low nitrogen total concentrations in the medium and especially at concentrations bigger than 3 g L-1 negatively affected the antimicrobial activity. This indicated that the main factor affected the secondary metabolism of Pseudoalteromonas sp. was the nitrogen concentration over C/N-ratio.
References
Barberel, S.I. and Walker, J.R.L. (2000). The effect of aeration upon the secondary metabolism of microorganisms. Biotechnology and Genetic Engineering Reviews 17: 281 – 326. https://doi.org/10.1080/02648725.2000.10647996
Bautista, J., Hernandez, A., Monteón, V. Hernandez, O. and López, R. (2017). Biochemical characterization of anti-methicillin resistant S. aureus protein (P-80) from marine Pseudoalteromonas. Journal of Microbiology and Food Sciences 18: 294-298. https://doi: 10.15414/jmbfs.2017/18.7.3.294-298
Berman, T. and Bronk, D. A. (2003). Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquatic Microbial Ecology 31(3): 279-305. https://www.doi.org/10.3354/ame031279
Cetina, A., Matos A., Garma, G., Barba, H., Vázquez, R., Zepeda-Rodríguez, A., Jay, D., Monteón, V. and López, R. (2010). Antimicrobial activity of marine bacteria isolated from Gulf of Mexico. Revista Peruana de Biología. 17: 231-236.
Commichau, F.M., Forchammer, K. and Stulke, J. (2006). Regulatory links between carbon and nitrogen metabolism. Current Opinion in Microbiology 9: 167 – 172. https://doi: 10.1016/j.mib.2006.01.001
Damashek, J. and Francis, C.A. (2018). Microbial Nitrogen Cycling in Estuaries: From Genes to Ecosystem Processes. Estuaries and Coasts 41, 626–660. https://doi.org/10.1007/s12237-017-0306-2
Escobar-Briones, E. and Garcia-Villalobos, F.J. (2009). Distribution of total organic carbon and total nitrogen in deep-sea sediments from the southwestern Gulf of Mexico. Boletin de la Sociedad Geológica Mexicana 61, 73 – 86.
García-Cabrea, R.I., Valdez-Cruz., A., Daniel-Vázquez., A., Blancas-Cabrera, M.A., and Trujillo-Roldán. (2021). Roles of culture media and oxygen tranfer in the scale-up from shake flasks to pneumatic bioreactor of the plant growth-promoting bacterium Rhyzobium phaseoli. Revista Mexicana de Ingeniería Química 20: 1091 – 1109. https://doi.org/10.24275/rmiq/Bio2297
Hassan, M., Zhu, G., Yang, Z., Lu, Y., Lang, Y., Gong, L. and Huang, S. (2020). Effect of C/N on biodegradation of Ciprofloxacin and denitrification from low C/N wastewater as assessed by a novel 3D-BER system. Sustainability 12: 7611. https://doi:10.3390/su12187611
Hebbeln, D., Wienberg, C., Wintersteller, P., Freiwald, A., Becker, M., Beuck, L., Dullo, C., Eberli, G.P., Glogowski, S., Matos, L., Forster, N., Reyes-Bonilla, H. and Taviani, M. (2014). Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico. Biogeosciences 11: 1799 – 1815. https://doi:10.5194/bg-11-1799-2014
Hernández-Rosas, F., Castilla-Marroquín, J.D., Loeza-Corte, J.M., Lizardi-Jiménez, M.A. and Hernández-Martínez, R. (2021). The importance of carbon and nitrogen sources on exopolysaccharide synthesis by lactic acid bacteria and their industrial importance. Revista Mexicana de Ingeniería Química 20, Bio2429. https://doi.org/10.24275/rmiq/Bio2429
Himabindu, M. and Annapurna, J. (2006). Nutritional requirements for gentamicin production by Micromonospora schinospora. Indian Journal of Experimental Biology 44: 842 – 848.
Kazmaier, U. and Junk, L. (2021). Recent Developments on the Synthesis and Bioactivity of Ilamycins/Rufomycins and Cyclomarins, Marine Cyclopeptides That Demonstrate Anti-Malaria and Anti-Tuberculosis Activity. Marine Drugs 19(8): 446. https://doi.org/10.3390/md19080446
Klingner, A., Bartsch, A., Dogs, M., Wagner-Dobler, I., Jahn, D., Simon, M., Brinkhoff, T.,
Becker, J. and Wittmann, C. (2015). Large-Scale C flux profiling reveals conservation of the Etner-Doudoroff pathway as a glycolytic strategy among marine bacteria that use glucose. Applied and Environmental Microbiology 81: 2408 – 2422. https://doi.org/10.1128/AEM.03157-14
Kong, D., Wang, X., Nie J. and Niu, G. (2019). Regulation of antibiotic production by signaling molecules in Streptomyces. Frontiers in Microbiology 10: 2927. https://doi: 10.3389/fmicb.2019.02927
Kroer, N., Jørgensen, N.O.G. and Coffin, R. B. (1994). Utilization of dissolved nitrogen by heterotrophic bacterioplankton: A comparison of three ecosystems. Applied and Environmental Microbiology 60: 4116–4123. https://doi.org/10.1128/aem.60.11.4116-4123.1994
Lauritano, C., Andersen, J.H., Hansen, E., Albrigtsen, M., Escalera, L., Esposito, F.,
Helland, K., Hanssen, K.O., Romano, G. and Ianora, A. (2016). Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Frontiers in Marine Science 68: 1 – 12. https://doi.org/10.3389/fmars.2016.00068
Liu, C.Q., Wei, X.C., An, F.L. and Lu, Y.H. (2019). Ammonium acetate supplement strategy for enhancement of chaetominine production in liquid culture of marine-derived Aspergillus fumigatus CY018. Jounal of Microbiology Biotechnology 29: 587 – 595. https://doi: 10.4014/jmb.1812.12038
López, R., Monteón, V.M., Chan, E., Montejo, R. and Chan, M. (2012). Oxygen limitation favors the production of protein with antimicrobial activity in Psedoalteromonas sp. Brazilian Journal of Microbiology 43: 1206 – 1212. https://doi.org/10.1590/S1517-83822012000300048
Martínez-Castro, M., Salehi-Najafabadi, Z., Romero, F., Pérez-Sanchiz, R., Fernámdez-
Chimeno, Martín, J.F. and Barreiro, C. (2012). Taxonomy and chemically semi-defined media for the analysis of the tacrolimus producer “Streptomyces tsukubaensis”. Applied Microbiology and Biotechnology 97: 2139 – 2152. https://doi: 10.1007/s00253-012-4364-x
Masschelein, J., Jenner, M. and Challis, G. L. (2017). Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Natural Product Reports 34(7), 712-783. https://doi.org/10.1039/C7NP00010C
McCauley, E.P., Piña, I.C., Thompson, A.D., Bashir, K., Weinberg, M., Kurz, S. L. and Crews, P (2020). Highlights of marine natural products having parallel scaffolds found from marine-derived bacteria, sponges, and tunicates. Journal Antibiotics 73: 504–525. https://doi.org/10.1038/s41429-020-0330-5
Miao, L., Kwong, T.F.N. and Qian, P.Y. (2006). Effect of culture conditions on mycelial growth, antibacterial activity, and metabolite profiles of the marine-derived fungus Arthrinium c.f. saccharicola. Applied Microbiology and Biotechnology 72: 1063 – 1073. https://doi: 10.1007/s00253-006-0376-8
Moreira, J.V., Marques, S.C. and Gremasco, M.A. (2020). Evaluation of carbon:nitrogen in semi-defined culture medium to tacrolimus biosynthesis by Streptomyces tsukubaensis and the effect on bacterial growth. Biotechnology Reports 26: e00440. https://doi: 10.1016/j.btre.2020.e00440
National Committee for Clinical Laboratory Standards. (1993). Methods for dilution in antimicrobial susceptibility tests. Approved standard M2-A5. National Committee for Clinical Laboratory Standards, Villanova, PA.
Nofiani, R., Weisberg, A.J., Tsunoda, T., Panjaitan, R.G.P., Brilliantoro, R., Chang, J.H.,
Philmus, B. and Mahmud, T. (2020). Antibacterial potential of secondary metabolites from Indonesian marine bacterial symbionts. International Journal of Microbiology 2020, ID 8898631, 11 pages. https://doi.org/10.1155/2020/8898631
Offret, C., Desriac, F., Le Chevalier, P., Mounier, J., Jégou, C. and Fleury, Y. (2016). Spotlight on antimicrobial metabolites from the marine bacteria Pseudoalteromonas: chemodiversity and ecological significance. Marine drugs 14(7), 129. https://doi.org/10.3390/md14070129
Pan, R., Bal, X., Chen, J., Zhang, H. and Wang, H. (2019). Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: a literature review. Frontiers in Microbiology 10: 294. https://doi. 10.3389/fmicb.2019.00294
Papon, N., Copp, B. R. and Courdavault, V. (2022). Marine drugs: Biology, pipelines, current and future prospects for production. Biotechnology Advances 54: 107871, https://doi.org/10.1016/j.biotechadv.2021.107871
Pham, J.V., Yilma, M.A., Feliz, A., Majid, M.T., Maffetone, N., Walker, J.R., Kim, E., Cho, H.J., Reynolds, J.M., Song, M.C., Park, S.R. and Yoon, Y.J. (2019). A review of the microbial production of bioactive natural products and biologics. Frontiers in Microbiology 10: 1404. https://doi. 10.3389/fmicb.2019.01404
Preetha, R., Jayaprakash, N.S., Philip, R. and Bright-Singh, I.S. (2006). Optimization of carbon and nitrogen sources and growth factors for the production of an aquaculture probiotic (Pseudomonas MCCB 103) using response surface methodology. Journal of Applied Microbiology 102: 1043 – 1051. https://doi. 10.1111/j.1365-2672.2006.03149.x
Sánchez, S., Chávez, A., Forero, A., Garcia-Hunte, Y., Romero, A., Sánchez, M., Rocha, D., Sánchez, B., Avalos, M., Guzman-Trampe, S., Rodriguez-Sanoja, R., Langley, E. and Ruiz, B. (2010). Carbon source regulation of antibiotic production. Journal of Antibiotics 63: 442 – 459. https://doi: 10.1038/ja.2010.78
Song, W-S, Kim, S-M, Jo, S-H, Lee, J-S, Jeon, H-J, Ko, B.J., Choi, K-Y, Yange, Y-H, Kim, Y-G. (2020). Multi-omics characterization of the osmotic stress resistance and protease activities of the halophilic bacterium Pseudoalteromonas phenolica in response to salt stress. RSC Advances 10: 23792 – 23800. https://doi.org/10.1039/ D0RA04034G
Wang, X., Xia, K., Yang, X. and Tang, C. (2019). Growth strategy of microbes on mixed carbon sources. Nature Communications 10:1279.
Wilmes, B., Hartung, A., Lalk, M., Liebeke, M., Schweder, T. and Neubauer, P. (2010). Feed-batch process for the psychrotolerant marine bacterium Pseudoalteromonas haloplanktis. Microbilal Cell Factories 9: 72. http://www.microbialcellfactories.com/ content/9/1/72
Yao, Y., Pu, Y., Ngan, W.Y., Kan, K., Pan, J., Li, M. and Habimana, O. (2020). Effect of sodium citrate on the structure and microbial community composition of an early-stage multispecies biofilm model. Scientific Reports 10: 16585. https://doi.org/10.1038/s41598-020-73731-8
Zhang, Y., Jiao, R., Lu, Y. and Yao, L. (2016). Improvement of chaetominine production by tryptophan feeding and medium optimization in submerged fermentation of Aspergillus fumigatus CY018. Bioresources and Bioprocessing 3: 45. https://doi:10.1186/s40643-016-0117-5

Copyright (c) 2022 Revista Mexicana de Ingeniería Química

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By publishing your paper in our journal you are also granting it the copyright of the information that it contains.