Effect of commercial chitosan on in vitro inhibition of Colletotrichum siamense, fruit quality and elicitor effect on postharvest avocado fruit
Abstract
Anthracnose is the main disease causing postharvest losses in 'Hass' avocadoes. The preharvest control of anthracnose is carried out with synthetic fungicides, so its postharvest use is limited. Chitosan, a non-toxic biopolymer considered GRAS, is an alternative to synthetic fungicide. The aims of the study were to determine in vitro the antifungal effect of chitosan and evaluate the elicitor effect and shelf-life-extending of chitosan on postharvest 'Hass' avocado fruits. A commercial chitosan was used. Nine strains of C. siamense were treated with 0, 0.5, 1.0, and 1.5% chitosan. Mycelial grown, sporulation, and germination were evaluated. Avocado fruits were also treated with the same chitosan concentration and stored at room temperature until ripening, and phenylalanine ammonia-lyase (PAL) activity was evaluated daily. Finally, avocado fruits were inoculated with three strains of C. siamense and subsequently treated with the same chitosan concentrations. Weight loss, color, and firmness were evaluated. As a result, all strains were sensitive to increasing chitosan concentration, reaching 100% inhibition of mycelial growth at 1.5% chitosan. PAL activity was higher in the pulp than in the skin. Weight loss decreased rapidly with 0 and 0.5% chitosan, whereas 1.0 and 1.5% chitosan decreased firmness loss and color change.
References
Ashton, O. B. O., Wong, M., McGhie, T. K., Vather, R., Wang, Y., Requejo-Jackman, C., Ramankutty, P. and Woolf, A. B. (2006). Pigments in avocado tissue and oil. Journal of Agricultural and Food Chemistry, 54(26), 10151–10158. https://doi.org/10.1021/jf061809j
Bautista-Baños, S., Necha, L. L. B., Hernández-López, M. and Rodríguez-González, F. (2016). Morphological and ultrastructural modifications of chitosan-treated fungal phytopathogens. In S. Bautista-Baños, G. Romanazzi and A. Jiménez-Aparicio (Eds.), Chitosan in the Preservation of Agricultural Commodities (pp. 251–275). https://doi.org/10.1016/B978-0-12-802735-6.00009-4
Bill, M., Sivakumar, D., Korsten, L. and Thompson, A. K. (2014a). The efficacy of combined application of edible coatings and thyme oil in inducing resistance components in avocado (Persea americana Mill.) against anthracnose during post-harvest storage. Crop Protection, 64, 159–167. https://doi.org/10.1016/j.cropro.2014.06.015
Bill, M., Sivakumar, D., Thompson, A. K. and Korsten, L. (2014b). Avocado fruit quality management during the postharvest supply chain. Food Reviews International, 30(3), 169–202. https://doi.org/10.1080/87559129.2014.907304
Chávez-Magdaleno, M. E., González-Estrada, R. R., Ramos-Guerrero, A., Plascencia-Jatomea, M. and Gutiérrez-Martínez, P. (2018a). Effect of pepper tree (Schinus molle) essential oil-loaded chitosan bio-nanocomposites on postharvest control of Colletotrichum gloeosporioides and quality evaluations in avocado (Persea americana) cv. Hass. Food Science and Biotechnology, 27(6), 1871–1875. https://doi.org/10.1007/s10068-018-0410-5
Chávez-Magdaleno, M. E., Gutiérrez-Martínez, P., Montaño-Leyva, B. and González-Estrada, R. R. (2019). Evaluación in vitro del quitosano y aceites esenciales para el control de dos especies patógenas de Colletotrichum aisladas de aguacate (Persea americana Mill). TIP Revista Especializada En Ciencias Químico-Biológicas, 22(1), 51–58. https://doi.org/10.22201/fesz.23958723e.2019.0.189
Chávez-Magdaleno, M., Luque-Alcaraz, A., Gutiérrez-Martínez, P., Cortez-Rocha, M., Burgos-Hernández, A., Lizardi-Mendoza, J. and Plascencia-Jatomea, M. (2018b). Effect of chitosan-pepper tree (Schinus molle) essential oil biocomposites on the growth kinetics, viability and membrane integrity of Colletotrichum gloeosporioides. Revista Mexicana de Ingeniería Química, 17(1), 29–45. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Chavez
Cho, B., Koyama, K., Olivares Díaz, E. and Koseki, S. (2020). Determination of “Hass” avocado ripeness during storage based on smartphone image and machine learning model. Food and Bioprocess Technology, 1998. https://doi.org/10.1007/s11947-020-02494-x
Correa-Pacheco, Z. N., Bautista-Baños, S., Valle-Marquina, M. Á. and Hernández-López, M. (2017). The effect of nanostructured chitosan and chitosan-thyme essential oil coatings on Colletotrichum gloeosporioides growth in vitro and on cv Hass avocado and fruit quality. Journal of Phytopathology, 165(5), 297–305. https://doi.org/10.1111/jph.12562
Cortés-Higareda, M., de Lorena Ramos-García, M., Correa-Pacheco, Z. N., del Río-García, J. C. and Bautista-Baños, S. (2019). Nanostructured chitosan/propolis formulations: characterization and effect on the growth of Aspergillus flavus and production of aflatoxins. Heliyon, 5(5). https://doi.org/10.1016/j.heliyon.2019.e01776
Cox, K. A., McGhie, T. K., White, A. and Woolf, A. B. (2004). Skin colour and pigment changes during ripening of “Hass” avocado fruit. Postharvest Biology and Technology, 31(3), 287–294. https://doi.org/10.1016/j.postharvbio.2003.09.008
Ding, P. and Ding, Y. (2020). Stories of salicylic acid: A plant defense hormone. Trends in Plant Science, 1, 1–17. https://doi.org/10.1016/j.tplants.2020.01.004
González-Estrada, R., Blancas-Benítez, F., M. Velázquez-Estrada, R., Montaño-Leyva, B., Ramos-Guerrero, A., Aguirre-Güitrón, L., Moreno-Hernández, C., Coronado-Partida, L., Herrera-González, J. A., Rodríguez-Guzmán, C. A., del Ángel-Cruz, J. A., Rayón-Díaz, E., Cortés-Rivera, H. J., Santoyo-González, M. A. and Gutierrez-Martinez, P. (2020). Alternative eco-friendly methods in the control of post-harvest decay of tropical and subtropical fruits. In Modern Fruit Industry (pp. 1–22). IntechOpen. https://doi.org/10.5772/intechopen.85682
González-Estrada, R. R., Blancas-Benitez, F. J., Aguirre-Güitrón, L., Hernandez-Montiel, L. G., Moreno-Hernández, C., Cortés-Rivera, H. J., Herrera-González, J. A., Rayón-Díaz, E., Velázquez-Estrada, R. M., Santoyo-González, M. A. and Gutiérrez-Martínez, P. (2021). Alternative management technologies for postharvest disease control. In Food Losses, Sustainable Postharvest and Food Technologies (pp. 153–190). Elsevier. https://doi.org/10.1016/B978-0-12-821912-6.00008-0
Herrera-González, J. A., Bautista-Baños, S., Salazar-García, S. and Gutiérrez-Martínez, P. (2020). Current situation of postharvest handling and fungal diseases of avocado ‘Hass’ for export in Michoacán, Mexico. Revista Mexicana de Ciencias Agrícolas, 11(7), 1647–1660. https://doi.org/10.29312/remexca.v11i7.2402
Herrera-González, J. A., Bautista-Baños, S., Serrano, M., Romanazzi, G. and Gutiérrez-Martínez, P. (2021). Non-chemical treatments for the pre- and post-harvest elicitation of defense mechanisms in the fungi–avocado pathosystem. Molecules, 26(22), 6819. https://doi.org/10.3390/molecules26226819
Herrera-González, J. A., Salazar-García, S., Martínez-Flores, H. E. and Ruiz-García, J. E. (2017). Indicadores preliminares de madurez fisiológica y comportamiento postcosecha del fruto de aguacate Méndez. Revista Fitotecnia Mexicana, 40(1), 55–63. https://doi.org/10.1145/1276377.1276478
Kaleda-Marino, A., Pinsetta-Junior, J. S., Marques-Magalhães, K. and Mattiuz, B.-H. (2018). Chitosan-propolis combination inhibits anthracnose in ‘Hass’ avocados. Emirates Journal of Food and Agriculture, 30(8), 681. https://doi.org/10.9755/ejfa.2018.v30.i8.1764
Kumar Patel, M., Maurer, D., Feygenberg, O., Ovadia, A., Elad, Y., Oren-Shamir, M. and Alkan, N. (2020). Phenylalanine: A Promising Inducer of Fruit Resistance to Postharvest Pathogens. Foods, 9(5), 646. https://doi.org/10.3390/foods9050646
Marques, K. M., Galati, V. C., Fernandes, J. D. R., Guimarães, J. E. R., Silva, J. P., Mattiuz, B. H. and Mattiuz, C. F. M. (2016). Use of chitosan for the control of postharvest anthracnose and quality in avocados. Acta Horticulturae, 1120, 225–231. https://doi.org/10.17660/ActaHortic.2016.1120.34
McGuire, R. G. (1992). Reporting of objective color measurements. HortScience, 27(12), 1254–1255. https://doi.org/10.21273/hortsci.27.12.1254
Obianom, C., Romanazzi, G. and Sivakumar, D. (2019). Effects of chitosan treatment on avocado postharvest diseases and expression of phenylalanine ammonia-lyase, chitinase and lipoxygenase genes. Postharvest Biology and Technology, 147(October 2018), 214–221. https://doi.org/10.1016/j.postharvbio.2018.10.004
Obianom, C. and Sivakumar, D. (2018a). Natural plant volatiles as an alternative approach to control stem-end rot in avocado cultivars. Journal of Phytopathology, 166(1), 1–9. https://doi.org/10.1111/jph.12653
Obianom, C. and Sivakumar, D. (2018b). Differential response to combined prochloraz and thyme oil drench treatment in avocados against the control of anthracnose and stem-end rot. Phytoparasitica, 46(3), 273–281. https://doi.org/10.1007/s12600-018-0663-9
Oliveira-Junior, E. N. de. (2016). Fungal growth control by chitosan and derivatives. In Fungal Pathogenicity: Vol. i (Issue tourism, p. 13). InTech. https://doi.org/10.5772/63308
Rajestary, R., Landi, L. and Romanazzi, G. (2020). Chitosan and postharvest decay of fresh fruit: Meta‐analysis of disease control and antimicrobial and eliciting activities. Comprehensive Reviews in Food Science and Food Safety, 1–20. https://doi.org/10.1111/1541-4337.12672
Rodríguez-López, E., González-Prieto, J. and Mayek-Pérez, N. (2009). La Infección de Colletotrichum gloeosporioides (Penz.) Penz. y Sacc. en aguacatero (Persea americana Mill.): Aspectos Bioquímicos y Genéticos. Revista Mexicana de Fitopatología, 27(1), 53–63. https://doi.org/http://www.scielo.org.mx/scielo.php?script=sci_arttextandpid=S0185-33092009000100007andlng=esandnrm=iso
SIAP-Producción Agrícola. (2020). Servicio de Información Agroalimentaria y Pesquera. https://nube.siap.gob.mx/cierreagricola/
StatSoft, Inc. (2014). STATISTICA (data analysis software system) (No. 12). www.statsoft.com
Xoca-Orozco, L. A., Aguilera-Aguirre, S., López-García, U. M., Gutiérrez-Martínez, P. and Chacón-López, A. (2018). Effect of chitosan on the in vitro control of Colletotrichum sp. and its influence on post-harvest quality in Hass avocado fruits. Revista Bio Ciencias, 5(1), e355. https://doi.org/10.15741/revbio.05.01.13
Xoca-Orozco, L.-Á., Cuellar-Torres, E. A., González-Morales, S., Gutiérrez-Martínez, P., López-García, U., Herrera-Estrella, L., Vega-Arreguín, J. and Chacón-López, A. (2017). Transcriptomic analysis of avocado Hass (Persea americana Mill) in the interaction system fruit-chitosan-Colletotrichum. Frontiers in Plant Science, 8(June), 1–14. https://doi.org/10.3389/fpls.2017.00956
Yuan-Ying, S., Ya-Lin, Q. and Lei, C. (2012). Induction of sporulation in plant pathogenic fungi. Mycology, 3(3), 195–200. https://doi.org/10.1080/21501203.2012.719042
Zhao, Q. (2016). Lignification: flexibility, biosynthesis and regulation. Trends in Plant Science, 21(8), 713–721. https://doi.org/10.1016/j.tplants.2016.04.006

Copyright (c) 2022 Revista Mexicana de Ingeniería Química

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By publishing your paper in our journal you are also granting it the copyright of the information that it contains.