Modification of the nutraceutical characteristics of jalapeño chili peppers in response to hormones

  • H. Medina
  • L. González-Cruz
  • R.G. Olan-Villegas
  • G. Acosta-García
  • N.L. Flores-Martínez
  • A. Bernardino-Nicanor
Keywords: jalapeño chili pepper, carotenoids, phytohormones, gibberellic acid, auxins


Pot experiments were conducted in a greenhouse of the National Technological of Mexico in Celaya during two summer seasons, in 2019 and 2020, to study the changes in the concentration of nutraceutical compounds in jalapeño chili pepper in response to two phytohormones (gibberellic acid and auxins) and two drying processes (lyophilization and drying by convection oven). Jalapeño chili pepper (Capsicum annuum L.) plants were treated with the phytohormones separately (gibberellic acid, 5 mM solution and auxins (2 mL/L solution)) and mixed together. The obtained results indicated that the freeze-drying process significantly preserved the concentration of nutraceutical compounds and antioxidant activity. The individual application of phytohormones led to significant increases in the concentrations of all nutraceutical compounds and antioxidant activity in the jalapeño chili peppers. However, an antagonist effect of the phytohormone mixture on jalapeño chili pepper production was observed, and for this reason, no jalapeño chili pepper samples were obtained. In conclusion, drying and phytohormonal treatment influence the preservation of nutraceutical compounds and antioxidant activity.


Abd, E., Faten, S. (2009). Effect of urea and some organic acids on plant growth, fruit yield and its quality of sweet pepper (Capsicum annuum L.). Research Journal of Agriculture and Biological Science 5, 372-379. Retrieved from

Ahmed, J. and Shivhare, U.S. (2002). Debnath S. Colour degradation and rheology of green chilli puree during thermal processing. International Journal of Food Science & Technology 37, 57-63.

Alvarez-Parrilla, E., de la Rosa, L.A., Amarowicz, R. and Shahidi, F. (2011). Antioxidant activity of fresh and processed Jalapeno and Serrano peppers. Journal of Agricultural and Food Chemistry 59, 163-173.

Benzie, I.F. and Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry 239, 70-76.

Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254.

Brand-Williams, W., Cuvelier, M.E. and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28, 25-30.

Campos-Hernández, N., Jaramillo-Flores, M.E., Téllez-Medina, D.I. and Alamilla-Beltrán, L. (2018). Effect of traditional dehydration processing of pepper jalapeno rayado (Capsicum annuum) on secondary metabolites with antioxidant activity. CyTA-Journal of Food 16, 316-324.

Cervantes-Paz, B., Yahia, E.M., de Jesús Ornelas-Paz, J., Victoria-Campos, C.I., Ibarra-Junquera, V., Pérez-Martínez, J.D. and Escalante-Minakata, P. (2014). Antioxidant activity and content of chlorophylls and carotenoids in raw and heat-processed Jalapeño peppers at intermediate stages of ripening. Food Chemistry 146, 188-196.

Chen, J.H., Wei, D. and Lim, P.E. (2020). Enhanced coproduction of astaxanthin and lipids by the green microalga Chromochloris zofingiensis: Selected phytohormones as positive stimulators. Bioresource Technology 295, 122242.

Contreras-Padilla, M. and Yahia, E.M. (1998). Changes in capsaicinoids during development, maturation, and senescence of chili peppers and relation with peroxidase activity. Journal of Agricultural and Food Chemistry 46, 2075-2079.

Gao, S. and Chu, C. (2020). Gibberellin metabolism and signaling: targets for improving agronomic performance of crops. Plant and Cell Physiology 61, 1902-1911.

Daood, H.G., Kapitány, J., Biacs, P. and Albrecht, K. (2006). Drying temperature, endogenous antioxidants and capsaicinoids affect carotenoid stability in paprika (red pepper spice). Journal of the Science of Food and Agriculture 86, 2450-2457.

Jaleel, C.A., Riadh, K., Gopi, R., Manivannan, P., Inès, J., Al-Juburi, H.J. and Panneerselvam, R. (2009). Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum 31, 427-436.

Khan, N., Ahmed, M.J. and Shah, S.Z.A. (2019). Comparative analysis of mineral content and proximate composition from chilli pepper (Capsicum annuum L.) germplasm. Pure and Applied Biology 8,1338-1347.

Kozlova, T.A., Hardy, B.P., Krishna, P. and Levin, D.B. (2017). Effect of phytohormones on growth and accumulation of pigments and fatty acids in the microalgae Scenedesmus quadricauda. Algal Research 27, 325-334.

Kumara, N., Loganandhan, N., Somashekhar and Hanumanthe, G.B. (2016) Effect of Black Polythene Mulches on Growth and Yield of Green Chilli (Capsicum annuum) in Tumkur District, Karnataka. Nature Environment and Pollution Technology 15, 201-204. Retrieved from

Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.

Li, Y., Jin, Y., Li, J., Li, H. and Yu, Z. (2016). Effects of pungency degree on mesophilic anaerobic digestion of kitchen waste. Appled Energy 181, 171-178.

Makris, D.P. and Rossiter, J.T. (2000). Heat-induced, metal-catalyzed oxidative degradation of quercetin and rutin (quercetin 3-O-rhamno-syl-glucoside) in aqueous model systems. Journal of Agricultural and Food Chemistry 48, 3830–3838.

Medina-Torres, N., Cuevas-Bernardino, J.C., Ayora-Talavera, T., Patrón-Vázquez, J.A., Rodríguez-Buenfil, I., and Pacheco, N. (2021). Changes in the physicochemical, rheological, biological, and sensorial properties of habanero chili pastes affected by ripening stage, natural preservative and thermal processing. Revista Mexicana de Ingeniería Química 20, 195-212.

Moreno-Salazar, R., Sánchez-García, I., Chan-Cupul, W., Ruiz-Sánchez, E., Hernández-Ortega, H.A., Pineda-Lucatero, J. and Figueroa-Chávez, D. (2020). Plant growth, foliar nutritional content and fruit yield of Capsicum chinense biofertilized with Purpureocillium lilacinum under greenhouse conditions. Scientia Horticulture 261, 108950.

Montoya-Ballesteros, L., Gardea-Béjar, A., Ayala-Chávez, G., Martínez-Núñez, Y. and Robles-Ozuna, L. (2010). Capsaicinoides y color en chiltepín (capsicum annuum var. aviculare). Efecto del proceso sobre salsas y encurtidos. Revista Mexicana de Ingeniería Química 9, 197-207. Retrieved from

Montoya-Ballesteros, L., González-León, A., Martínez-Nú˜nezY., Robles-Burgue˜noM., García-Alvarado, M. and Rodríguez-Jimenes, G. (2017). Impacto del secado al sol y por convección forzada sobre capsaicina, capsantina y el contenido de ácido ascórbico en chiltepín (Capsicum annuum L. var. glabriusculum). Revista Mexicana de Ingeniería Química, 16, 813-825. Retrieved from

Park, J.H. and Kim, C.S. (2007). The stability of color and antioxidant compounds in paprika (Capsicum annuum L.) powder during the drying and storing process. Food Science and Biotechnology 16, 187-192. Retrieved from

Peña-Yam, L.P., Ruíz-Sánchez, E., Barboza-Corona, J.E. and Reyes-Ramírez, A. (2016). Isolation of mexican bacillus species and their effects in promoting growth of chili pepper (Capsicum annuum L. cv Jalapeño). Indian J. Microbiol 56, 375-378.

Pérez-Jiménez, M., Pazos-Navarro, M., López-Marín, J., Gálvez, A., Varó, P. and del Amor, F.M. (2015). Foliar application of plant growth regulators changes the nutrient composition of sweet pepper (Capsicum annuum L.). Scientia Horticulture 194, 188-193.

Pichardo-González, J.M., Guevara-Olvera, L., Couoh-Uicab, Y.L., González-Cruz, L., Bernardino-Nicanor, A., Medina, H.R., González-Chavira, M.M. and Acosta-García, G. (2018). Effect of gibberellins on the yield of jalapeño pepper (Capsicum annuum L.). Revista Mexicna de Ciencias Agricolas 9, 925-943.

Pickersgill, B. (2016) Chile Peppers (Capsicum spp.). In Ethnobotany of Mexico Ethnobiology; Lira R., Casas A., Blancas J., Eds. Springer, New York, NY.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26, 1231-1237.

Reddy, N. and Crohn, D.M. (2018). Effect of Composted Greenwaste and Rockwool on Plant Growth of Okra, Tomato, and Chili Peppers. Compost Science & Utilization 26, 217-224.

Rochín-Wong, C., Gámez-Meza, N., Montoya-Ballesteros, L. and Medina-Juarez, L. (2013). Efecto de los procesos de secado y encurtido sobre la capacidad antioxidante de los fitoquímicos del chiltepín (Capsicum annuum L. var. glabriusculum). Revista Mexicana de Ingeniería Química, 12, 227-239. Retrieved from

Roussos, P.A., Ntanos, E., Denaxa, N.K. Tsafouros, A., Bouali, I., Nikolakakos, V. and Assimakopoulou, A. (2021). Auxin (triclopyr) and cytokinin (forchlorfenuron) differentially affect fruit physiological, organoleptic and phytochemical properties of two apricot cultivars. Acta Physiol Plant 43, 1-2.

Sandoval-Oliveros, R., Guevara-Olvera, L., Beltrán, J.P., Gómez-Mena, C. and Acosta-García, G. (2017). Developmental landmarks during floral ontogeny of jalapeño chili pepper (Capsicum annuum L.) and the effect of gibberellin on ovary growth. Plant Reproduction 30, 119-129.

Serna, M., Hernández, F., Coll, F., Coll, Y. and Amorós, A. (2012). Brassinosteroid analogues effects on the yield and quality parameters of greenhouse-grown pepper (Capsicum annuum L.). Plant Growth Regulation 68, 333-342.

Slade, W. O., Ray, W. K., Williams, P. M., Winkel, B. S. and Helm, R. F. (2012). Effects of exogenous auxin and ethylene on the Arabidopsis root proteome. Phytochemistry 84, 18-23.

Sogi, D.S., Siddiq, M. and Dolan, K.D. (2015). Total phenolics, carotenoids and antioxidant properties of Tommy Atkin mango cubes as affected by drying techniques. LWT-Food Science and Technology 62, 564-568.

Toontom, N., Posri, W., Lertsiri, S. and Meenune, M. (2016). Effect of drying methods on Thai dried chilli's hotness and pungent odour characteristics and consumer liking. International Food Research Journal 23, 289. Retrieved from

Vázquez-Cárdenas, C.F., Valiente-Banuet, J.I., Caballero-Mata, P., Mújica-Paz, H., Rodríguez-Rodríguez, J. and Welti-Chanes, J. (2015). Criterios cinéticos y estadísticos para la selección de las condiciones de extracción de compuestos volátiles en chile piquín (Capsicum annuum L. var. glabriusculum). Revista Mexicana de Ingeniería Química 14, 231-241. Retrieved from

Weiss, D. and Ori, N. (2007). Mechanisms of cross talk between gibberellin and other hormones. Plant physiology 144, 1240-1246.

Wen, F. P., Zhang, Z. H., Bai, T., Xu, Q. and Pan, Y. H. (2010). Proteomics reveals the effects of gibberellic acid (GA3) on salt-stressed rice (Oryza sativa L.) shoots. Plant science 178, 170-175.

Yamaguchi, T., Mizobuchi, T., Kajikawa, R., Kawashima, H., Miyabe, F., Terao, J., Takamura, H. and Matoba, T. (2001). Radical-scavenging activity of vegetables and the effect of cooking on their activity. Food Science and Technology Research 7, 250-257.

How to Cite
Medina, H., González-Cruz, L., Olan-Villegas, R., Acosta-García, G., Flores-Martínez, N., & Bernardino-Nicanor, A. (2022). Modification of the nutraceutical characteristics of jalapeño chili peppers in response to hormones. Revista Mexicana De Ingeniería Química, 21(2), Alim2719.
Food Engineering