Bioleaching of As from mine tailings using an autochthonous Bacillus cereus strain
Abstract
Contamination of heavy metals has been a serious environmental problem due to increasing anthropogenic activities such as mining, smelting, livestock, landfills, waste dumps, and agriculture. Bioleaching experiments were conducted using native Bacillus cereus MAMPE19 BCG, isolated and characterized from previous research, to test removal of arsenic (As) from actual mining waste. Mineralogical characterization by XRD was performed to identify mineral associations with As. The experimental design included a bioleaching system with agitated flasks (triplicate) and the effects of pH (5, 7, and 9) and pulp density (10, 15, and 20%) were evaluated. Finally, based on the results of the ANOVA, the system that achieved the highest percentage of As dissolution was selected and scaled to a stirred tank bioreactor. The composition of the mineral was mainly calcite (CaCO3), gismondine (CaAl2Si2O8·4(H2O)), akermanite (Ca2MgSi2O7), and silicon oxide (SiO2). Native Bacillus cereus dissolved 40.6 ± 4.9 and 37.4 ± 2.7 % of As in 10 d, in agitated flasks at a pH of 5 and a pulp density of 10 and 15%, respectively; and a 27.5 ± 2.9% dissolution of As was achieved in the stirred tank bioreactor at pH 5 and pulp density of 15%, supported by significant statistical differences.
References
Abba, Z. A., Yahaya, S., Ahmad, S. A., Ramírez-Moreno, N. and Yusuf, I. (2020). Bioremediation of heavy metals by melanised and non-melanised feathers and heavy metal resistant feather-degrading bacteria. Revista Mexicana de Ingeniera Química 19, 243-252. https://doi.org/10.24275/rmiq/Bio1551
Aguilar, N. C., Faria, M. C. S., Pedron, T., Batista, B. L., Mesquita, J. P., Bomfeti, C. A. and Rodrigues, J. L. (2020). Isolation and characterization of bacteria from a Brazilian gold mining area with a capacity of arsenic bioaccumulation. Chemosphere 240. https://doi.org/10.1016/j.chemosphere.2019.124871
Akhgar, B. N. and Pourghahramani, P. (2015). Impact of mechanochemical activation on natural pyrite dissolution. Hydrometallurgy 153, 83-87. https://doi.org/10.1016/j.hydromet.2015.02.010
Alcázar-Medina, F. A., Núñez-Núñez, C. M., Villanueva-Fierro, I., Antileo, C. and Proal-Nájera, J. B. (2020). Removal of heavy metals present in groundwater form a northern México mining community using Agave tequilana Weber extracts. Revista Mexicana de Ingeniería Química 19(3), 1187-1199. https://doi.org/10.24275/rmiq/Bio1047
Ali, M. F., Mukhtar, H. and Dufossé, L. (2022). Microbial calcite induction: a magic that fortifies and heals concrete. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-022-03941-2
Alotaibi, B. S., Khan, M. & Shamim, S. (2021). Unraveling the underlying heavy metal detoxification mechanisms of Bacillus species. Microorganisms 9(8), 1628. https://doi.org/10.3390/microorganisms9081628
Ayangbenro, A. S. and Babalola, O. O. (2020). Genomic analysis of Bacillus cereus NWUAB01 and its heavy metal removal from polluted soil. Scientific Reports 10-19660, 1–12. https://doi.org/10.1038/s41598-020-75170-x
Baniasadi, M., Vakilchap, F., Bahaloo-Horeh, N., Mousavi, S. M. and Farnaud, S. (2019). Advances in bioleaching as a sustainable method for metal recovery from e-waste: A review. Journal of Industrial and Engineering Chemistry 76, 75-90. https://doi.org/10.1016/j.jiec.2019.03.047
Beltrán-Pineda, M. E. and Gómez-Rodríguez, A. M. (2016). Biorremediación de metales pesados cadmio (Cd), cromo (Cr) y mercurio (Hg), mecanismos bioquímicos e ingeniería genética: una revisión. Revista Facultad de Ciencias Básicas 12(2), 172-197. https://doi.org/10.18359/rfcb.2027
Buendía-González, L., Orozco-Villafuerte, J., Estrada-Zuñiga, M. E., Barrera Díaz, C. E., Vernon-Cartes, E. J. and Cruz-Sosa, F. (2010). In vitro lead and nickel accumulation in mesquite (Prosopis laevigata) seedlings. Revista Mexicana de Ingeniería Química 9(1), 1-9. http://rmiq.org/ojs311/index.php/rmiq/article/view/1697
Cheah, C., Cheow, Y. L. and Ting, A. S. Y. (2022). Comparative analysis on metal removal potential of exopolymeric substances with live and dead cells of bacteria. International Journal of Environmental Research 16, 12. https://doi.org/10.1007/s41742-021-00386-2
Cisneros-de La Cueva, S., Martínez-Prado, M. A., Rojas-Contreras, J. A., Medrano-Roldán, H. and Murillo-Martínez, M. A. (2014). Isolation and characterization of a novel strain, Bacillus sp KJ629314, with a high potential to aerobically degrade diesel. Revista Mexicana de Ingeniera Química 13(2), 393-403.
Concha, E. (2017). Minería global contemporánea o financiarizada. Ola Financiera 10(27), 81-116. http://dx.doi.org/10.22201/fe.18701442e.2017.27.61009
Cortés-Sánchez, A. D. J., Díaz-Ramírez, M. and Guzmán-Medina, C. A. (2018). Sobre Bacillus cereus y la inocuidad de los alimentos (una revisión). Revista de Ciencias 22(1), 93-108. https://doi.org/10.25100/rc.v22i1.7101
Covarrubias, S. A. and Peña-Cabriales, J. J. (2017). Contaminación ambiental por metales pesados en México: Problemática y estrategias de fitorremediación. Revista Internacional de Contaminación Ambiental 33, 7-21. https://doi.org/10.20937/RICA.2017.33.esp01.01
Cui, X., Zhang, J., Wang, X., Pan, M., Lin, Q., Khan, K. Y., Yan, B., Li, T., He, Z., Yang, X. and Chen, G. (2021). A review on the thermal treatment of heavy metal hyperaccumulator: Fates of heavy metals and generation of products. Journal of Hazardous Materials 405, 123832. https://doi.org/10.1016/j.jhazmat.2020.123832
Fan, S. H., Matsuo, M., Huang, L., Tribelli, P. M. and Götz, F. (2021). The MpsAB bicarbonate transporter is superior to carbonic anhydrase in biofilm-forming bacteria with limited CO2 diffusion. Microbiology Spectrum 9(1), e0030521. https://doi.org/10.1128/Spectrum.00305-21
Garboza, F., Frontado, R., Noguera, N., Ávila, H., Ojeda, L. and Ramírez, N. (2011). Uso de medios alternativos a base de hidrolizado de caseína y extracto de Aspergillus niger y su efecto sobre la expresión genética de una cepa de Escherichia coli. Revista de la Sociedad Venezolana de Microbiología 31(2), 138-143. Available in: https://www.redalyc.org/pdf/1994/199422818010.pdf. Accessed: 30 March 2022
Gavilán-García, I. C., Ladino, L. A., Franco, E. and Juárez, J. (2020). Determination of factors involved in the assessment of potential risk of atmospheric dispersion and ingestion of mining tailings. Revista Internacional de Contaminación Ambiental 36(1), 127-138. Available in: http://www.scielo.org.mx/scielo.php?pid=S0188-49992020000100127&script=sci_abstract&tlng=en. Accessed: 31 March 2022
Giri, A. K., Patel, R. K., Mahapatra, S. S. and Mishra, P. C. (2013). Biosorption of arsenic (III) from aqueous solution by living cells of Bacillus cereus. Environmental Science and Pollution Research 20(3), 1249-6. https://doi.org/10.1007/s11356-012-1249-6
Gómez-Ramírez, M., Rivas-Castillo, A. M., Moreno-Villanueva, F. and Rojas-Avelizapa, N. G. (2021). Bioleaching of metals from machining process wastes. Revista Mexicana de Ingeniera Quimica 20(2), 751–759. https://doi.org/10.24275/rmiq/Bio2079
Hoffmann, T. D., Paine, K. and Gebhard, S. (2021). Genetic optimisation of bacteria-induced calcite precipitation in Bacillus subtilis. Microbial Cells Factories 20, 214. https://doi.org/10.1186/s12934-021-01704-1
Hu, C., Yu, C., Liu, Y., Hou, X., Liu, X., Hu, Y. and Jin, C. (2015). A hybrid mechanism for the synechocystis arsenate reductase revealed by structural snapshots during arsenate reduction. The Journal of Biological Chemistry, 290(36), 22262-22273. https://doi.org/10.1074/jbc.M115.659896
Huang, F., Wang, Z. H., Cai, Y. X., Chen, S. H., Tian, J. H. and Cai, K. Z. (2018). Heavy metal bioaccumulation and cation release by growing Bacillus cereus RC-1 under culture conditions. Ecotoxicology and Environmental Safety 157, 216-226. https://doi.org/10.1016/j.ecoenv.2018.03.077
Jain, S., Saluja, B., Gupta, A., Marla, S. S. and Goel, R. (2011). Validation of arsenic resistance in Bacillus cereus strain AG27 by comparative protein modeling of arsC gene product. The Protein Journal 30(2), 91-101. https://doi.org/10.1007/s10930-011-9305-5
Kashyap, S., Chandra, R., Kumar, B. and Verma, P. (2021). Biosorption efficiency of nickel by various endophytic bacterial strains for removal of nickel from electroplating industry effluents: an operational study. Ecotoxicology. https://doi.org/10.1007/s10646-021-02445-y
Kikuti, M., Richini-Pereira, V. B., Da Silva, R. C. and Langoni, H. (2013). Phytohaemagglutinin’s effect on Neospora caninum antigen production. Archives of Veterinary Science 18(1), 59-64. https://doi.org/10.5380/avs.v18i1.27291
Martínez-Prado, M. A. and Soto-Álvarez, C. E. (2017). Removal of petroleum hydrocarbons from a low permeability soil: Bioremediation and electroremediation. Revista Mexicana de Ingeniería Química 16(3), 955-970. Retrieved from: http://rmiq.org/ojs311/index.php/rmiq/article/view/989
Martínez-Prado, M. A., Pérez-López, M. E., Villanueva-Fierro, I. and González-Nevarez, C. C. (2013). Behavior of Arsenic and Fluoride Concentration in Guadiana Valley Aquifer of Durango, Mexico. Journal of Environmental Protection 4(12B), 14-20. DOI:10.4236/jep.2013.412A2003
Meléndez-Sánchez, E. R., Martínez-Prado, M. A., Núñez-Ramírez, D. M., Rojas-Contreras, J. A., López-Miranda, J., Medina-Torres, L. and Parra-Saldivar, R. (2022). Phylogenetic analysis of strains isolated from mine tailings and evaluation of their resistance to As and Zn. Revista Mexicana de Ingeniería Química 21(1), Bio2700. https://doi.org/10.24275/rmiq/Bio2700
Meléndez-Sánchez, E. R. (2021). Aislamiento y caracterización de microorganismos de jales mineros y su resistencia a As y Zn. Tesis de Maestría en Ciencias en Ingeniería Bioquímica. TecNM-Instituto Tecnológico de Durango, 100 pp.
Meléndez-Sánchez, E. R., Martínez-Prado, M. A., Núñez-Ramírez, D. M., Rojas-Contreras, J. A., López-Miranda, J. and Medina-Torres, L. (2021). Review: Biotechnological potential of As- and Zn-resistant autochthonous microorganisms from mining process. Water, Air, and Soil Pollution 232, 332. https://doi.org/10.1007/s11270-021-05268-z
Miyatake, M. and Hayashi, S. (2005). Characteristics of arsenic removal by Bacillus cereus strain W2. Resources Processing 52(4), 172-182. https://doi.org/10.4144/rpsj.58.101
Mohd-Bahari, Z., Ali Hamood-Altowayti, W., Ibrahim, Z., Jaafar, J. and Shahir, S. (2013). Biosorption of As (III) by non-living biomass of an arsenic-hypertolerant Bacillus cereus strain SZ2 isolated from a gold mining environment: Equilibrium and kinetic study. Applied Biochemistry and Biotechnology 171(8), 2247–2261. https://doi.org/10.1007/s12010-013-0490-x
Muñoz-Silva, L., Olivera-Gonzales, P., Santillan-Torres, M. and Tamariz-Angeles, C. (2019). Microorganismos tolerantes a metales pesados del pasivo minero Santa Rosa, Jangas (Perú). Revista Peruana de Biología (online) 26(1), 109–118. Available in: http://www.scielo.org.pe/scielo.php?pid=S1727-99332019000100013&script=sci_abstract. Accessed: 18 March 2022
Núñez-Ramírez, D. M., Medina-Torres, L., Calderas, F., Lara, R. H., Medrano-Roldán, H. and Manero, O. (2018) Bioleaching process for silver recovery: Structural and rheological studies. Minerals Engineering 121, 122-128. https://doi.org/10.1016/j.mineng.2018.03.019
Núñez-Ramírez, D. M., Solís-Soto, A., López-Miranda, J., Pereyra-Alférez, B., Rutiaga-Quiñónes, M., Medina-Torres, L. and Medrano-Roldán, H. (2011). Zinc bioleaching from an iron concentrate using Acidithiobacillus ferrooxidans strain from Hercules Mine of Coahuila Mexico. International Journal of Minerals, Metallurgy and Materials 18(5), 523-526. https://doi.org/10.1007/s12613-011-0472-3
Oualha, M., Bibi, S., Sulaiman, M. and Zouari, N. (2020). Microbially induced calcite precipitation in calcareous soils by endogenous Bacillus cereus, at high pH and harsh weather. Journal of Environmental Management 257, 109965. https://doi.org/10.1016/j.jenvman.2019.109965
Pérez-Bou, L., Martínez-Sardiñas, A., Salgado-Bernal, I., Larrea-Duarte, C., Arias, M. E. C., Alleyne-Veitía, S. and Carballo-Valdés, M. E. (2021). Biosorción de cinc y cadmio por bacterias inactivadas pretratadas. Minería y Geología 37(1), 90-104. Retrieved from: https://www.redalyc.org/journal/2235/223566343006/html/
Priyadarshanee, M. and Das, S. (2021). Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. Journal of Environmental Chemical Engineering 9(1), 104686. https://doi.org/10.1016/j.jece.2020.104686
Rahman, Z. and Singh, V. P. (2020). Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environmental Science and Pollution Research 27, 27563-27581. https://doi.org/10.1007/s11356-020-08903-0
Rangasamy, A., Gandhi, S. and Tamilchelvan, V. (2021). Biosorption of hexavalent chromium by Paenibacillus pabuli and Bacillus cereus isolated from alkaline industrial contaminated soil in Puducherry, India. Nature Environment and Pollution Technology 20(2), 729-735. https://doi.org/10.46488/NEPT.2021.v20i02.032
Rangel-Montoya, E. A. and Balagurusamy, N. (2015). Bioprospección de bacterias oxidantes de arsenito de suelo de la Comarca Lagunera. Revista Chapingo, Serie Ciencias Forestales y del Ambiente 21(1), 41-56. Retrieved from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-40182015000100004. Accessed: 31 March 2022
Sharma, B. and Shukla, P. (2021). Lead bioaccumulation mediated by Bacillus cereus BPS-9 from an industrial waste contaminated site encoding heavy metal resistant genes and their transporters. Journals of Hazardous Materials 401, 123285. https://doi.org/10.1016/j.jhazmat.2020.123285
Tallent, S. M., Kotewicz, K.T.M., Strain, E. A. and Bennett, R. W. (2012). Efficient isolation and identification of Bacillus cereus Group. Journal of AOAC International 95(25), 446-451. https://doi.org/10.5740/jaoacint.11-251
Vargas-Rubio, K. I., Medrano-Roldan, H. and Reyes-Jáquez, D. (2021). Comparative study of chemical process and biotechnological process for the removal of bismuth from mining concentrates. Revista Mexicana de Ingeniería Química, 20(3), 1-8. https://doi.org/10.24275/rmiq/Proc2215
Wang, Y., Zhang, J., Wang, Y., Wang, K., Wei, H. and Shen, L. (2018). Isolation and characterization of the Bacillus cereus BC7 strain, which is capable of zearalenone removal and intestinal flora modulation in mice. Toxicon 155, 9-20. https://doi.org/10.1016/j.toxicon.2018.09.005
Wu, H., Wu, Q., Wu, G., Gu, Q. and Wei, L. (2016). Cd-resistant strains of B. cereus S5 with endurance capacity and their capacities for cadmium removal from cadmium-polluted water. PLoS ONE 11(4), 1-25. https://doi.org/10.1371/journal.pone.0151479
Yamamoto, K., Toya, S., Sabidi, S., Hoshiko, Y. and Maeda, T. (2021). Diluted Luria-Bertani medium vs. sewage sludge as growth media: comparison of community structure and diversity in the culturable bacteria. Applied Microbiology and Biotechnology 105(9), 3787-3798. https://doi.org/10.1007/s00253-021-11248-4
Yan, H., Owusu, D. C., Han, Z., Zhao, H., Ji, B., Zhao, Y., Tucker, M. E. and Zhao, Y. (2021). Extracellular, surface, and intracellular biomineralization of Bacillus subtilis Daniel-1 bacteria. Geomicrobiology Journal, 38(8), 698-708. https://doi.org/10.1080/01490451.2021.1937406
Yin, K., Wang, Q., Lv, Min and Chen, L. (2019). Microorganism remediation strategies towards heavy metals. Chemical Engineering Journal 360, 1553-1563. https://doi.org/10.1016/j.cej.2018.10.226
Zakaria, N., Roslee, A., Gomez-Fuentes, C., Zulkharnain, A., Abdulrasheed, M., Sabri, S., Ramírez-Moreno, N., Calisto-Ulloa, N. and Ahmad, S. (2020). Kinetic studies of marine psychrotolerant microorganisms capable of degrading diesel in the presence of heavy metals. Revista Mexicana de Ingeniería Química 19(3), 1375-1388. https://doi.org/10.24275/rmiq/Bio1072
Zhou, X., Kang, F., Qu, X., Fu, H., Alvarez, P. J. J., Tao, S. and Zhu, D. (2020). Role of extracellular polymeric substances in microbial reduction of arsenate to arsenite by Escherichia coli and Bacillus subtilis. Environmental Science and Technology, 54(10), 6185-6193. https://doi.org/10.1021/acs.est.0c01186
Zhuang, D., Yan, H., Tucker, M. E., Zhao, H., Han, Z., Zhao, Y., Sun, B., Li, D., Pan, J., Zhao, Y., Meng, R., Shan, G., Zhang, X. and Tang, R. (2018). Calcite precipitation induced by Bacillus cereus MRR2 cultured at different Ca2+ concentrations: Further insights into biotic and abiotic calcite. Chemical Geology 500, 64-87. https://doi.org/10.1016/j.chemgeo.2018.09.018

Copyright (c) 2022 Revista Mexicana de Ingeniería Química

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By publishing your paper in our journal you are also granting it the copyright of the information that it contains.