Formulation and characterization of Ciprofloxacin encapsulated liposomes: In vitro antimicrobial activity against multi drug resistant Salmonella typhi

  • M. Aslam Department of Biotechnology, Lahore college for Women University, Pakistan
  • M. Iqtedar Lahore College for Women University
  • H. Saeed Punjab University College of Pharmacy, Lahore. Pakistan.
  • R. Abdullah Department of Biotechnology, Lahore College for Women University, Lahore. Pakistan.
  • A. Kaleem Department of Biotechnology, Lahore College for Women University, Lahore. Pakistan.
Keywords: Salmonella typhi, Nanocarriers, Liposomes, Ciprofloxacin, Multidrug-resistant (MDR)

Abstract

Since decades antibiotics are used against bacterial infections, however for past few years world is fronting serious challenge due to emergence of bacterial antibiotic resistance for which new alternatives of cure are being sought. Liposomes are universally used nano-carriers designed to carry drug safely to action site. Emergence of antibiotic resistance in Salmonella typhi has left us with very few choices of cure. In current study liposomes were designed to carry ciprofloxacin and In vitro efficacy analyzed against multi drug resistant Salmonella typhi. Ciprofloxacin loaded liposomes prepared with Bx-DSPE-PEG(2000) (0.1%), total 100mg lipids, Phosphatidylcholine (PC) and Cholesterol (CH) at ratio of 5:3 had 93.95% encapsulation efficiency. Efficacy was observed through MIC and MBC by time kill assay. The encapsulation efficiency of cipro-loaded liposomes increased from 30% to 93.95% with increase cholesterol content. They showed slow to fast reléase, stability reduced from 93.95% to 71.9% over period of 9 months. Polydispersity index  was 0.7, particle size 95.27nm with -20.58mV zeta potential. As compared to drug alone MBC and MIC achieved for ciprofloxacin encapsulated liposomes was at lower drug concentrations i.e. 15 µg/ml, and 10 µg/ml. Conclusively, ciprofloxacin encapsulated liposomes prooved an effective in vitro drug delivery method against MDR Salmonella typhi.

References

Al-Joufi, F.A., Salem-Bekhit, M.M., Taha, E.I., Ibrahim, M.A., Muharram, M.M., Alshehri, S., Ghoneim, M.M. and Shakeel, F.J.M. (2022). Enhancing ocular bioavailability of ciprofloxacin using colloidal lipid-based carrier for the management of post-surgical infection. Molecules 27(3)733, 1-12. https://doi.org/10.3390/molecules27030733.

Alhariri, M., Majrashi, M.A., Bahkali, A.H., Almajed, F.S., Azghani, A.O., Khiyami, M.A., Alyamani, E.J., Aljohani, S.M. and Halwani, M.A. (2017). Efficacy of neutral and negatively charged liposome-loaded gentamicin on planktonic bacteria and biofilm communities. International Journal of Nanomedicine 12, 6949—6961. Doi: 10.2147/IJN.S141709

Azhar, A.B., Khalid, A. and Shah, S.J.C. (2019). The implications of extensive drug-resistant typhoid fever: A case report. Cureus 11(6). DOI: 10.7759/cureus.5032

Barrett, J. and Fhogartaigh, C.N.J.M. (2017). Bacterial gastroenteritis. Medicine 45(11), 683-689. DOI:https://doi.org/10.1016/j.mpmed.2017.08.002

Benne, N., Leboux, R.J., Glandrup, M.,van Duijn, J.,Vigario, F.L., Neustrup, M. A., Romeijn, S.,Galli, F.,Kuiper, J. and Jiskoot, W.J.J.O.C.R. (2020). Atomic force microscopy measurements of anionic liposomes reveal the effect of liposomal rigidity on antigen-specific regulatory T cell responses. Journal of Controlled Release 318, 246-255. DOI: 10.1016/j.jconrel.2019.12.003

Cao, Y., Karthikeyan, A.S., Ramanujam, K., Raju, R., Krishna, S., Kumar, D., Ryckman, T., Mohan, V.R., Kang, G. and John, J.J.T.J.O.I.D. (2021). Geographic pattern of typhoid fever in India: a model-based estimate of cohort and surveillance data. The Journal of Infectious Diseases 224(Supplement_5), S475-S483. DOI: 10.1093/infdis/jiab187

Chang, M.-X., Zhang, J.F., Sun, Y.H., Li, R.S., Lin, X.L., Yang, L., Webber, M.A. and Jiang, H.X. (2021). Contribution of different mechanisms to ciprofloxacin resistance in Salmonella spp. Frontiers in Microbiology 12(1030), 1-11. https://doi.org/10.3389/fmicb.2021.663731

Cipolla, D., Wu, H., Eastman, S., Redelmeier, T., Gonda, I. and Chan, H.K.J.P.R. (2016). Tuning ciprofloxacin release profiles from liposomally encapsulated nanocrystalline drug. Pharmaceutical Research 33(11), 2748-2762. DOI: 10.1007/s11095-016-2002-5

Cipolla, D., Wu, H., Gonda, I., Eastman, S., Redelmeier, T. and Chan, H.K. (2014). Modifying the release properties of liposomes toward personalized medicine. Journal of Pharmaceutical Sciences 103(6), 1851-1862. DOI: 10.1002/jps.23969

Corrêa, A.C., Pereira, P.R. and Paschoalin, V.M. (2019). Preparation and Characterization of Nanoliposomes for the Entrapment of Bioactive Hydrophilic Globular Proteins. Journal of Visualized Experiments 150, e59900. DOI: 10.3791/59900

Dahiya, S., Malik, R., Sharma, P., Sashi, A., Lodha, R., Kabra, S.K., Sood, S., Das, B. K., Walia, K. and Ohri, V.J.T.I.J.O.M.R. (2019). Current antibiotic use in the treatment of enteric fever in children. Indian Journal of Medical Research 149(2), 263-269. Doi: 10.4103/ijmr.IJMR_199_18

Das, A., Konyak, P.M., Das, A., Dey, S.K. and Saha, C.J.H. (2019). Physicochemical characterization of dual action liposomal formulations: Anticancer and antimicrobial Heliyon. 5(8), e02372. DOI: 10.1016/j.heliyon.2019.e02372

Ferreira, M., Ogren, M., Dias, J.N., Silva, M., Gil, S., Tavares, L., Aires-da-Silva, F., Gaspar, M.M. and Aguiar, S.I. (2021). Liposomes as antibiotic delivery systems: A promising nanotechnological strategy against antimicrobial resistance. Molecules 26(7), 2047, 1-25. https://doi.org/10.3390/molecules26072047

Gashe, F., Mulisa, E., Mekonnen, M. and Zeleke, G.J.J.o.p. (2018). Antimicrobial resistance profile of different clinical isolates against third-generation cephalosporins. Journal of Pharmaceutics 2018, 5070742-5070742. https://doi.org/10.1155/2018/5070742

Ghosh, S., Qi, R., Carter, K.A., Zhang, G., Pfeifer, B.A. and Lovell, J.F. (2019). Loading and releasing ciprofloxacin in photoactivatable liposomes. Biochemical Engineering Journal 141, 43-48. DOI: 10.1016/j.bej.2018.10.008

Gibani, M.M., Voysey, M., Jin, C., Jones, C., Thomaides-Brears, H., Jones, E., Baker, P., Morgan, M., Simmons, A. and Gordon, M.A.J.C.I.D. (2019). The impact of vaccination and prior exposure on stool shedding of Salmonella Typhi and Salmonella Paratyphi in 6 controlled human infection studies. Clinical Infectious Diseases 68(8), 1265-1273. doi: 10.1093/cid/ciy670.

Girish, R., Kumar, A., Khan, S., Dinesh, K.R. and Karim, S. (2013). Revised ciprofloxacin breakpoints for Salmonella: is it time to write an obituary? Journal of Clinical and Diagnostic Research 7(11), 2467 - 2469. doi: 10.7860/JCDR/2013/7312.3581

Gonzalez-Escobedo, G., Marshall, J.M. and Gunn, J.S. (2011). Chronic and acute infection of the gall bladder by Salmonella Typhi: understanding the carrier state. Nature Reviews Microbiology 9(1), 9-14. doi: 10.1038/nrmicro2490

Gómez-Montaño, F.J., Orduña-Díaz, A., Avelino-Flores, M.C.G., Avelino-Flores, F., Reyes-Betanzo, C. (2021). Specific optical-based biosensor to rapid detection of Salmonella Typhimurium using FTIR: Evaluation in natural orange juice, as an application in food products. Revista Mexicana deIngeniería Química 20 (3),1-10 Bio2538. https://doi.org/10.24275/rmiq/Bio2538

Gómez-Montaño, F.J., Orduña-Díaz, A., Avelino-Flores, M.C.G., Avelino-Flores, F., Ramos-Collazo, F., Reyes-Betanzo, C., López-Gayou, V. (2020). Detection of Salmonella enterica on silicon substrates biofunctionalized with anti-Salmonella IgG, analyzed by FTIR spectroscopy. Revista Mexicana deIngeniería Química 19(3), 1175-1185. https://doi.org/10.24275/rmiq/Bio993

Haeri, A., Alinaghian, B., Daeihamed, M. and Dadashzadeh, S. (2014). Preparation and characterization of stable nanoliposomal formulation of fluoxetine as a potential adjuvant therapy for drug-resistant tumors. Iranian Journal of Pharmaceutical Research 13(Suppl), 3-14.

Hosny, K.M. (2010). Ciprofloxacin as ocular liposomal hydrogel. AAPS PharmSciTech 11(1), 241-246. Doi: 10.1208/s12249-009-9373-4

Hughes, M.J., Birhane, M.G., Dorough, L., Reynolds, J.L., Caidi, H., Tagg, K.A., Snyder, C. M., Yu, A.T., Altman, S.M. and Boyle, M.M. (2021). Extensively drug-resistant typhoid fever in the united states. Open forum infectious diseases, Oxford University Press US. ofab572. DOI: 10.1093/ofid/ofab572

Ingle, D. J., Nair, S., Hartman, H., Ashton, P.M., Dyson, Z.A., Day, M., Freedman, J., Chattaway, M.A., Holt, K.E. and Dallman, T.J.J.P.N.T.D. (2019). Informal genomic surveillance of regional distribution of Salmonella Typhi genotypes and antimicrobial resistance via returning travellers. PLOS 13(9),1-20 e0007620. https://doi.org/10.1371/journal.pntd.0007620

Jain, R.L. and Shastri, J. (2011). Study of ocular drug delivery system using drug-loaded liposomes. International Journal of Pharmaceutical Investigation 1(1), 35-41. Doi: 10.4103/2230-973X.76727.

Jin, C., Gibani, M. M., Pennington, S. H., Liu, X., Ardrey, A., Aljayyoussi, G., Moore, M., Angus, B., Parry, C. M. and Biagini, G. A. J. P. N. T. D. 2019. Treatment responses to azithromycin and ciprofloxacin in uncomplicated Salmonella Typhi infection: A comparison of clinical and microbiological data from a controlled human infection model. PLOS 13(12), e0007955, 1-18. https://doi.org/10.1371/journal.pntd.0007955

Kashef, M.T., Saleh, N.M., Assar, N.H. and Ramadan, M.A. (2020). The antimicrobial activity of ciprofloxacin-loaded niosomes against ciprofloxacin-resistant and biofilm-forming Staphylococcus aureus. Infection and Drug Resistance 13, 1619-1629. DOI https://doi.org/10.2147/IDR.S249628

Khanal, D., Khatib, I., Ruan, J., Cipolla, D., Dayton, F., Blanchard, J.D., Chan, H.K. and Chrzanowski, W. (2020). Nanoscale probing of liposome encapsulating drug nanocrystal using atomic force microscopy-infrared spectroscopy. Analytical Chemistry 92(14), 9922-9931. https://doi.org/10.1021/acs.analchem.0c01465

Khanal, P. R., Satyal, D., Bhetwal, A., Maharjan, A., Shakya, S., Tandukar, S. and Parajuli, N.P. (2017). Renaissance of conventional first-line antibiotics in Salmonella enterica clinical isolates: Assessment of MICs for therapeutic antimicrobials in enteric fever cases from Nepal. BioMed Research International 2017;1-6. DOI: 10.1155/2017/2868143

Khatib, I., Khanal, D., Ruan, J., Cipolla, D., Dayton, F., Blanchard, J. D. and Chan, H.K. J. I. J. O. P. 2019. Ciprofloxacin nanocrystals liposomal powders for controlled drug release via inhalation. International Journal of Pharmaceutics 566, 641-651. DOI: 10.1016/j.ijpharm.2019.05.068

Lee, S., Park, N., Yun, S., Hur, E., Song, J., Lee, H., Kim, Y. and Ryu, S.J.G.p. (2021). Presence of plasmid-mediated quinolone resistance (PMQR) genes in non-typhoidal Salmonella strains with reduced susceptibility to fluoroquinolones isolated from human salmonellosis in Gyeonggi-do, South Korea from 2016 to 2019. Gut Pathogens 13(1), 1-7. https://doi.org/10.1186/s13099-021-00431-7

Lujan, H., Griffin, W.C., Taube, J.H. and Sayes, C.M.J.I.j.o.n. (20190. Synthesis and characterization of nanometer-sized liposomes for encapsulation and microRNA transfer to breast cancer cells. International Journal of Nanomedicine 14, 5159-5173. DOI https://doi.org/10.2147/IJN.S203330.

Malik-Kale, P., Jolly, C.E., Lathrop, S., Winfree, S., Luterbach, C. and Steele-Mortimer, O. (2011). Salmonella–at home in the host cell. Salmonella host-pathogen interactions. Frontiers in Microbiology 31;1-9. https://doi.org/10.3389/fmicb.2011.00125

Masuet-Aumatell, C., Atouguia, J.J.T.M. and Disease, I. (2021). Typhoid fever infection–Antibiotic resistance and vaccination strategies: A narrative review. Travel Medicine and Infectious Disease 40, 101946. 1-15 Doi: 10.1016/j.tmaid.2020.101946.

Meng, W., He, C., Hao, Y., Wang, L., Li, L. and Zhu, G.J.D.D. (2020). Prospects and challenges of extracellular vesicle-based drug delivery system: Considering cell source. Drug Delivery 27(1):585-598. DOI: 10.1080/10717544.2020.1748758

Munaweera, I., Shaikh, S., Maples, D., Nigatu, A.S., Sethuraman, S.N., Ranjan, A., Greenberg, D.E. and Chopra, R. (2018). Temperature-sensitive liposomal ciprofloxacin for the treatment of biofilm on infected metal implants using alternating magnetic fields. International Journal of Hyperthermia 34(2), 189-200. DOI: 10.1080/02656736.2017.1422028.

Muñoz-Caorre, M.O.F., Bravo-Alfaro, D.A., García, H.S., García-Varela, R. (2020). Development of a self-nanoemulsifying drug delivery system(snedds) from an insulin complex with modifiedphosphatidylcholine and mucoadhesive polysaccharide coatingas a potential none-invasive treatment for diabetes. Revista Mexicana deIngeniería Química 19(1), 49-58. DOI: https://doi.org/10.24275/rmiq/Bio454

Naveed, S. and Waheed, N. (2014). Simple UV spectrophotometric assay of ciprofloxacin. Mintage Journal of Pharmaceutical And Medical Sciences 3(4), 10-13.

Panwar, P., Pandey, B., Lakhera, P. and Singh, K. (2010). Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. International Journal of Nanomedicine 9(5):101-8. DOI: 10.2147/ijn.s8030

Pignatello, R., Leonardi, A., Fuochi, V., Petronio Petronio, G., Greco, A.S. and Furneri, P.M.

(2018). A method for efficient loading of ciprofloxacin hydrochloride in cationic solid lipid nanoparticles: Formulation and microbiological evaluation. Nanomaterials 8(5), 304-15. Doi: 10.3390/nano8050304.

Pitzer, V.E., Meiring, J., Martineau, F.P., Watson, C.H., Kang, G., Basnyat, B. and Baker, S.J.C.I.D. (2019). The invisible burden: diagnosing and combatting typhoid fever in Asia and Africa. Clinical Infectious Diseases 69(Supplement 5), S395-S401. doi: 10.1093/cid/ciz611

Popovska, O. 2014. An overview: methods for preparation and characterization of liposomes as drug delivery systems. International Journal of Pharmaceutical and Phytopharmacological Research 3(3): 182-189.

Robson, A.L., Dastoor, P.C., Flynn, J., Palmer, W., Martin, A., Smith, D.W., Woldu, A. and Hua, S.J.F.I.P. (2018). Advantages and limitations of current imaging techniques for characterizing liposome morphology. Frontiers in Pharmacology 9(80):1-8. https://doi.org/10.3389/fphar.2018.00080

Ruozi, B., Belletti, D., Tombesi, A., Tosi, G., Bondioli, L., Forni, F. and Vandelli, M.A. (2011). AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study. International Journal of Nanomedicine 6, 557–563. Doi: 10.2147/IJN.S14615

Salem, H. F., Ahmed, S.M., Hassaballah, A.E. and Omar, M.M. (2015). Targeting brain cells with glutathione-modulated nanoliposomes: in vitro and in vivo study. Drug Design, Development and Therapy 9:3705-27. DOI: 10.2147/DDDT.S85302

Seanego, C.T. and Ndip, R.N. (2012). Identification and antibacterial evaluation of bioactive compounds from Garcinia kola (Heckel) seeds. Molecules 17(6), 6569-6584. Doi: 10.3390/molecules17066569

Shu, Q., Wu, J. and Chen, Q.J.M. (2019). Synthesis, characterization of liposomes modified with biosurfactant MEL-A loading betulinic acid and its anticancer effect in HepG2 cell. Molecules 24(21), 3939-55 Doi: 10.3390/molecules24213939.

Silverman, R.B. (2004). Prodrugs and drug delivery systems, ed. Academic Press, San Diego. pp. 497-557.

Sur, S., Rathore, A., Dave, V., Reddy, K.R., Chouhan, R.S., Sadhu, V.J.N.S. and Nano-Objects. (2019). Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-structures and Nano-objects 20, 100397. DOI: 10.1016/j.nanoso.2019.100397

Topal, G. R., Devrim, B., Eryilmaz, M. and Bozkir, A .( 2018). Design of ciprofloxacin-loaded nano-and microcomposite particles for dry powder inhaler formulations: preparation, in vitro characterisation, and antimicrobial efficacy. Journal of Microencapsulation 35(6), 533-547. DOI: 10.1080/02652048.2018.1523970

Torge, A.,W agner, S., Chaves, P.S., Oliveira, E.G., Guterres, S.S.,Pohlmann, A.R.,Titz, A., Schneider, M. and Beck, R.C. (2017). Ciprofloxacin-loaded lipid-core nanocapsules as mucus penetrating drug delivery system intended for the treatment of bacterial infections in cystic fibrosis. International Journal of Pharmaceutics 527(1-2):92-102. DOI: 10.1016/j.ijpharm.2017.05.013

Wang, S., Yu, S. ,Lin, Y., Zou, P., Chai, G., Yu, H. H.,Wickremasinghe, H.,Shetty, N.,Ling, J. and Li, J. J. P. r. 2018. Co-delivery of ciprofloxacin and colistin in liposomal formulations with enhanced in vitro antimicrobial activities against multidrug resistant Pseudomonas aeruginosa. Pharmaceutical Research 35(10), 1-13. Doi: 10.1007/s11095-018-2464-8.

Weers, J. (2019). Comparison of phospholipid-based particles for sustained release of ciprofloxacin following pulmonary administration to bronchiectasis patients. Pulmonary Therapy 5(2), 127-150. DOI: 10.1007/s41030-019-00104-6

Weng, J.,Tong, H. H. and Chow, S. F. J. P. (2020). In vitro release study of the polymeric drug nanoparticles: Development and validation of a novel method. Pharmaceutics 12(8), 732-49. DOI: 10.3390/pharmaceutics12080732

Xu, J., Chen, Y., Jiang, X., Gui, Z. and Zhang, L.J.P. (2019). Development of hydrophilic drug encapsulation and controlled release using a modified nanoprecipitation method. Processes 7(6), 331-38. https://doi.org/10.3390/pr7060331

Yayehrad, A. T.,Wondie, G. B.,Marew, T. J. I. and Resistance, D. 2022. Different Nanotechnology Approaches for Ciprofloxacin Delivery Against Multidrug-Resistant Microbes. Infection and Drug Resistance 15, 413-426. DOI https://doi.org/10.2147/IDR.S348643

Zhang, X., Qi, J., Lu, Y., Hu, X., He, W. and Wu, W. (2014). Enhanced hypoglycemic effect of biotin-modified liposomes loading insulin: effect of formulation variables, intracellular trafficking, and cytotoxicity. Nanoscale Research Letters 9(1), 1-10. Doi: 10.1186/1556-276X-9-185

Published
2022-06-26
How to Cite
Aslam, M., Iqtedar, M., Saeed, H., Abdullah, R., & Kaleem, A. (2022). Formulation and characterization of Ciprofloxacin encapsulated liposomes: In vitro antimicrobial activity against multi drug resistant Salmonella typhi. Revista Mexicana De Ingeniería Química, 21(2), Bio2734. https://doi.org/10.24275/rmiq/Bio2734
Section
Biotechnology