Computational study of biomass fast pyrolysis in a fluidized bed reactor

  • C.D. Ahumada
  • J.F. Hinojosa-Palafox Universidad de Sonora
  • V.M. Maytorena
  • C. Pérez-Rábago
Keywords: Computational study, fast pyrolysis, biomass, fluidized bed reactor

Abstract

Biofuels are considered a promising source of renewable energy. Pyrolysis uses heat in an inert atmosphere to break down biomass and produce biofuels like bio-oil (tar) and synthesis gas. This paper presents a computational study of fast biomass pyrolysis in a laboratory fluidized reactor. A laminar flow regime and an Eulerian-Eulerian approach were considered. A comprehensive kinetic model consisting of sixteen irreversible, first-order reactions was coupled with conservation equations of mass, momentum, and energy. The computational model was validated with data reported in the literature. The effect of biomass type and reactor temperature on the thermal decomposition of biomass were analyzed, finding a direct relationship between the content of cellulose and production of tar and similarly between the content of lignin and production of char. Also, the absence of lignin in the biomass dramatically changes the tar and gas compositions. Energy requirements, temperature contours, the composition of the exit gases, and final product yields (tar, char, and gas) are reported.

References

Anca-Couce, A., Zobel, N., Jakobsen, H. A. (2013). Multi-scale modeling of fixed-bed thermo-chemical processes of biomass with the representative particle model: Application to pyrolysis. Fuel, 103, 773-782. https://doi.org/10.1016/j.fuel.2012.05.063.

Aramideh, S., Xiong, Q., Kong, S. C., Brown, R. C. (2015). Numerical simulation of biomass fast pyrolysis in an auger reactor. Fuel, 156, 234-242. https://doi.org/https://doi.org/10.1016/j.fuel.2015.04.038.

Baggio, P., Baratieri, M., Fiori, L., Grigiante, M., Avi, D., Tosi, P. (2009). Experimental and modeling analysis of a batch gasification/pyrolysis reactor. Energy Conversion and Management, 50(6), 1426-1435. https://doi.org/10.1016/j.enconman.2009.03.004.

Baratieri, M., Baggio, P., Fiori, L., Grigiante, M. (2008). Biomass as an energy source: thermodynamic constraints on the performance of the conversion process. Bioresource technology, 99(15), 7063-7073. https://doi.org/10.1016/j.biortech.2008.01.006.

Bhutto, A. W., Bazmi, A. A., Zahedi, G. (2011). Greener energy: Issues and challenges for Pakistan—Biomass energy prospective. Renewable and Sustainable Energy Reviews, 15(6), 3207-3219. https://doi.org/https://doi.org/10.1016/j.rser.2011.04.015.

Bilgen, S. (2014). Structure and environmental impact of global energy consumption. Renewable and Sustainable Energy Reviews, 38, 890-902. https://doi.org/https://doi.org/10.1016/j.rser.2014.07.004.

Bridgwater, A. V. (1994). Catalysis in thermal biomass conversion. Applied Catalysis A: General, 116(1-2), 5-47. https://doi.org/10.1016/0926-860X(94)80278-5.

Cabrera, A., Cox, L., Spokas, K., Hermosin, M. C., Cornejo, J., Koskinen, W. C. (2014). Influence of biochar amendments on the sorption-desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil. Science of the Total Environment, 470, 438-443. https://doi.org/10.1016/j.scitotenv.2013.09.080.

Di Blasi, C. (2000). Modelling the fast pyrolysis of cellulosic particles in fluid-bed reactors. Chemical Engineering Science, 55(24), 5999-6013. https://doi.org/10.1016/S0009-2509(00)00406-1.

Gera, D., Mathur, M. P., Freeman, M. C., Robinson, A. (2002). Effect of large aspect ratio of biomass particles on carbon burnout in a utility boiler. Energy & fuels, 16(6), 1523-1532. https://doi.org/10.1021/ef0200931.

Gidaspow, D. (1994). Multiphase flow and fluidization: continuum and kinetic theory descriptions. Academic press, ISBN: 9780122824708.

Gorensek, M. B., Shukre, R., Chen, C. C. (2019). Development of a Thermophysical Properties Model for Flowsheet Simulation of Biomass Pyrolysis Processes. ACS Sustainable Chemistry and Engineering, 7(9), 9017-9027. https://doi.org/10.1021/acssuschemeng.9b01278.

Gunn, D. J. (1978). Transfer of heat or mass to particles in fixed and fluidised beds. International Journal of Heat and Mass Transfer, 21(4), 467-476. https://doi.org/10.1016/0017-9310(78)90080-7.

Hertwich, E. G., Zhang, X. (2009). Concentrating-Solar Biomass Gasification Process for a 3rd Generation Biofuel. Environmental Science & Technology, 43(11), 4207-4212. https://doi.org/10.1021/es802853g.

Hornung, A., Dasappa, S. (2014). Thermochemical conversion of biomass. Transformation of Biomass: Theory to Practice. John Wiley & Sons Ltd.

Janse, A. M. C., Westerhout, R. W. J., & Prins, W. (2000). Modelling of flash pyrolysis of a single wood particle. Chemical engineering and processing: process intensification, 39(3), 239-252. https://doi.org/10.1016/S0255-2701(99)00092-6.

Kalgo, A. S. (2011). The development and optimisation of a fast pyrolysis process for bio-oil production. PhD Thesis. Aston University. Birmingham, UK.

Kan, T., Strezov, V., Evans, T. J. (2016). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126-1140. https://doi.org/https://doi.org/10.1016/j.rser.2015.12.185.

Lun, C. K. K., Savage, S. B., Jeffrey, D. J., Chepurniy, N. (1984). Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. Journal of Fluid Mechanics, 140, 223-256. https://doi.org/10.1017/S0022112084000586.

Mellin, P., Kantarelis, E., Yang, W. (2014). Computational fluid dynamics modeling of biomass fast pyrolysis in a fluidized bed reactor, using a comprehensive chemistry scheme. Fuel, 117, 704-715. https://doi.org/10.1016/j.fuel.2013.09.009.

Morales-Diaz, A., Vazquez-Sandoval, A. D., Carlos-Hernandez, S. (2015). analysis and control of a distributed parameter reactor for pyrolysis of wood, Revista Mexicana de Ingeniería Química, 14(2), 543-552.

Papadikis, K., Gu, S., Bridgwater, A. V., Gerhauser, H. (2009). Application of CFD to model fast pyrolysis of biomass. Fuel Processing Technology, 90(4), 504-512. https://doi.org/10.1016/j.fuproc.2009.01.010.

Palmay-Paredes, P. G., Morocho-Delgado, S., Puente-Guijarro, C., Donoso-Quimbita, C. (2021). Thermic pyrolysis of polypropylene waste as a source of fuel. Revista Mexicana de Ingeniería Química, 20(2), 1019-1027. https://doi.org/10.24275/rmiq/IA2321.

Ranganathan, P., Gu, S. (2016). Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes. Bioresource technology, 213, 333-341. https://doi.org/10.1016/j.biortech.2016.02.042.

Ranz, W. E., Marshall, W. R. (1952). Evaporation from drops. Chemical engineering progress, 48(3), 141-146.

Ranzi, E., Cuoci, A., Faravelli, T., Frassoldati, A., Migliavacca, G., Pierucci, S., & Sommariva, S. (2008). Chemical kinetics of biomass pyrolysis. Energy & Fuels, 22(6), 4292-4300. https://doi.org/10.1021/ef800551t.

Raveendran, K., Ganesh, A., Khilar, K. C. (1995). Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 74(12), 1812-1822. https://doi.org/https://doi.org/10.1016/0016-2361(95)80013-8.

Rossi, A. (1984). Fuel Characteristics of Wood and Nonwood Biomass Fuels. In D. A. Tillman & E. C. Jahn (Eds.), Progress in Biomass Conversion (Vol. 5, pp. 69-99). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-535905-4.50008-4.

Schaeffer, D. G. (1987). Instability in the evolution equations describing incompressible granular flow, Journal of Differential Equation,s 66 (1) 19–50. https://doi.org/10.1016/0022-0396(87)90038-6.

Suleiman, Y., Ibrahim, H., Anyakora, N. V., Mohammed, F., Abubakar, A., Aderemi, B. O., Okonkwo, P. C. (2013). Design and fabrication of fluidized-bed reactor. International Journal of Engineering and Computer Science, 2(5), 1595-1605.

Syamlal, M., Rogers, W., Obrien, T. J. (1993). MFIX documentation theory guide.

Trendewicz, A., Braun R., Dutta A., Ziegler J. (2014). One dimensional steady-state circulating fluidized-bed reactor model for biomass fast pyrolysis, Fuel, 133(1), 253-262, https://doi.org/10.1016/j.fuel.2014.05.009.

Uchimiya, M., Klasson, K. T., Wartelle, L. H., Lima, I. M. (2011). Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere, 82(10), 1431-1437. https://doi.org/10.1016/j.chemosphere.2010.11.050.

Wagenaar, B. M., Prins, W., Van Swaaij, W. P. M. (1994). Pyrolysis of biomass in the rotating cone reactor: modelling and experimental justification. Chemical Engineering Science, 49(24), 5109-5126. https://doi.org/10.1016/0009-2509(94)00392-0.

Weldekidan, H., Strezov, V., Town, G. (2018). Review of solar energy for biofuel extraction. Renewable and Sustainable Energy Reviews, 88, 184-192. https://doi.org/https://doi.org/10.1016/j.rser.2018.02.027.

Xie, T., Reddy, K. R., Wang, C. W., Yargicoglu, E., Spokas, K. (2015). Characteristics and Applications of Biochar for Environmental Remediation: A Review. Critical Reviews in Environmental Science and Technology, 45(9), 939-969. https://doi.org/10.1080/10643389.2014.924180.

Xiong, Q., Kong, S.-C., Passalacqua, A. (2013). Development of a generalized numerical framework for simulating biomass fast pyrolysis in fluidized-bed reactors. Chemical Engineering Science, 99, 305-313. https://doi.org/10.1016/j.ces.2013.06.017.

Xue, Q., Heindel, T. J., Fox, R. O. (2011). A CFD model for biomass fast pyrolysis in fluidized-bed reactors. Chemical Engineering Science, 66(11), 2440-2452. https://doi.org/10.1016/j.ces.2011.03.010.

Yang, Y. B., Sharifi, V. N., Swithenbank, J., Ma, L., Darvell, L. I., Jones, J. M., Pourkashanian, M., Williams, A. (2008). Combustion of a single particle of biomass. Energy & Fuels, 22(1), 306-316. https://doi.org/10.1021/ef700305r.

Published
2022-07-02
How to Cite
Ahumada, C., Hinojosa-Palafox, J., Maytorena, V., & Pérez-Rábago, C. (2022). Computational study of biomass fast pyrolysis in a fluidized bed reactor. Revista Mexicana De Ingeniería Química, 21(2), Cat2744. https://doi.org/10.24275/rmiq/Cat2744
Section
Catalysis, kinetics and reactors