Benign and straightforward synthesis of lignan-type dimers using crude peroxidase from red radish (Raphanus sativus var sativus)

  • A. Navarro
  • M. Gimeno
  • S. Alatorre-Santamaría
  • A. Navarro-Ocaña
Keywords: new enzyme sources, radish peroxidase, enzymatic oxidative coupling, phenolic dimers.

Abstract

Alkyl esters of hydroxycinnamic acids and vanillin derivatives were used as model compounds in the oxidative coupling reactions catalyzed by a crude enzymatic extract of Raphanus sativus var sativus (red radish). Six products were isolated and characterized: three alkyl esters of hydroxycinnamic acids dimers and three vanilloids dimers. Herein, we report the enzymatic extract of Raphanus sativus var. sativus showed peroxidase activity catalyzing the oxidative coupling of phenols. Vanilloid dimers were coupled in an ortho-ortho way as expected, while alkyl ester dimers were formed through 5-8 and 8-8 bonds via a radical mechanism prior to cyclization

References

Amarasekara, A.S., Wiredu B., and Razzaq, A. (2012). Vanillin based polymers: I . An electrochemical route to polyvanillin. Green Chemistry 14, 2395–2397. https://doi.org/10.1039/C2GC35645G

Andreoni, V., Bernasconi, S., and Bestetti, G. (1995). Biotransformation of ferulic acid and related compounds by mutant strains of Pseudomonas fluorescens. Applied Microbiology and Biotechnology 42, 830-835. https://doi.org/10.1007/BF00191177

Anita, Y., Widiyarti, G., and Abbas, J. (2014). Synthesis and elucidation structure of O-para dehydroguaiacol prepared by crude of Brassica oleracea var alboglabra peroxidase catalyzed oxidation. Journal of Applied Pharmaceutical Science 4, 62–65. https://doi.org/10.7324/JAPS.2014.40411

Antoniotti, S., Santhanam, L., Ahuja, D., Hogg, M.G., and Dordick, J.S. (2004). Structural diversity of peroxidase-catalyzed oxidation products of o-methoxyphenols. Organic Letters 6, 1975–1978. https://doi.org/10.1021/ol049448l

Arrieta-Baez, D., and Stark, R.E. (2006). Modeling suberization with peroxidase-catalyzed polymerization of hydroxycinnamic acids: Cross-coupling and dimerization reactions. Phytochemistry 67, 743–753. https://doi.org/10.1016/j.phytochem.2006.01.026

de Vasconcelos, D.N., Lima, A.N., Philot, E.A., Scott, A.L., Ferreira Boza, I.A., de Souza, A.R., Morgon, N.H., and Ximenes, V.F. (2019). Methyl divanillate: redox properties and binding affinity with albumin of an antioxidant and potential NADPH oxidase inhibitor. RSC Advances 9, 19983-19992. https://doi.org/10.1039/C9RA02465D

Duarte-Vazquez, M.A., García-Padilla, S., García-Almendárez, B.E., Whitaker, J.R., and Regalado, C. (2007). Broccoli Processing Wastes as a Source of Peroxidase. Journal of Agricultural and Food Chemistry 55, 10396–10404. https://doi.org/10.1021/jf072486+

Enomoto, Y. and Iwata, T. (2020). Synthesis of biphenyl polyesters derived from divanillic acid, and their thermal and mechanical properties. Polymer 193, 122330. https://doi.org/10.1016/j.polymer.2020.122330

Figueroa-Espinoza, M.-C. and Villeneuve, P. (2005). Phenolic acids enzymatic lipophilization. Journal of Agricultural and Food Chemistry 53, 2779–2787. https://doi.org/10.1021/jf0484273

Flohé, L. (2020). Looking back at the early stages of redox biology. Antioxidants 9, 1254. https://doi.org/10.3390/antiox9121254

Grúz, J., Pospíšil, J., Kozubíková, H., Pospíšil, T., Dolezal, K., Bunzel, M., and Strnad, M. (2015). Determination of free diferulic, disinapic and dicoumaric acids in plants and foods. Food Chemistry 171, 280–286. https://doi.org/10.1016/j.foodchem.2014.08.131

Guo, Z., Salamonczyk, G.M., Han, K., Machiya, K., and Sih, C.J. (1997). Enzymatic oxidative phenolic coupling. Journal of Organic Chemistry 62, 6700–6701. https://doi.org/10.1021/jo970995c

Hamid, M. and Khalil-ur-Rheman (2009) Potential applications of peroxidases. Food Chemistry 115, 1177–1186. https://doi.org/10.1016/j.foodchem.2009.02.035

Herrera-Zúñiga, L. D., González-Palma, M., Díaz-Godínez, G., Martínez-Carrera, D., Sánchez, C., and Díaz, R. (2021). Molecular docking of oxidases from Pleurotus ostreatus and the activity of those produced by ARS 3526 strain grown in both, submerged and solid-state fermentations. Revista Mexicana de Ingeniería Química, 20(1), 453-466. https://doi.org/10.24275/rmiq/Bio2076

Huang, Q., Huang, Q., Pinto, R.A., Griebenow, K., Schweitzer-Stenner, R., and Weber Jr., W.J. (2005). Inactivation of horseradish peroxidase by phenoxyl radical attack. Journal of the American Chemical Society 127, 1431-1437. https://doi.org/10.1021/ja045986h

Jantaree, P., Lirdprapamongkol, K., Kaewsri, W., Thongsornkleeb, C., Choowongkomon, K., Atjamasuppat, K., Ruchirawat, S., and Svasti, J. (2017) Homodimers of vanillin and apocynin decrease the metastatic potential of human cancer cells by inhibiting the fak/pi3k/akt signaling pathway. Journal of Agricultural and Food Chemistry 65, 2299-2306. https://doi.org/10.1021/acs.jafc.6b05697

Kim, H.S., Cho, D.H., Won, K., and Kim, Y.H. (2009) Inactivation of Coprinus cinereus peroxidase during the oxidation of various phenolic compounds originated from lignin. Enzyme and Microbial Technology 45, 150-155. https://doi.org/10.1016/j.enzmictec.2009.05.001

Kundu, A. (2017) Vanillin biosynthetic pathways in plants. Planta 245, 1069–1078. https://doi.org/10.1007/s00425-017-2684-x

Lai, A., Monduzzi, M., and Saba, G. (1985) Carbon-13 NMR studies on catechol, phenol and benzene derivatives of biological relevance. Magnetic Resonance in Chemistry 23, 379-383. https://doi.org/10.1002/mrc.1260230519

Lira Parada, P.A. (2014). Expandiendo la diversidad estructural del ácido ferúlico mediante reacciones de oxidación química y enzimática para la obtención de compuestos de valor agregado. Tesis de Maestría en Ingeniería Química, Universidad Nacional Autónoma de México, México.

Liu, H.-L., Wan, X., Huang, X.-F., and Kong, L.-Y. (2007). Biotransformation of sinapic acid catalyzed by Momordica charantia peroxidase. Journal of Agricultural and Food Chemistry 55, 1003–1008. https://doi.org/10.1021/jf0628072

Lopes, G.R., Pinto, D.C.G.A., and Silva, A.M.S. (2014). Horseradish peroxidase (HRP) as a tool in green chemistry. RSC Advances 4, 37244–37265. https://doi.org/10.1039/C4RA06094F

Moussouni, S., Saru, M., Ioannou, E., Mansour, M., Detsi, A., Roussis, V., and Kefalas, P. (2011). Crude peroxidase from onion solid waste as a tool for organic synthesis. Part II: oxidative dimerization – cyclization of methyl p-coumarate , methyl caffeate and methyl ferulate. Tetrahedron Letters 52, 1165–1168. https://doi.org/10.1016/j.tetlet.2011.01.004

Nishimura, R.T., Giammanco, C.H., Vosburg, D.A. (2010). Green, enzymatic syntheses of divanillin and diapocynin for the organic, biochemistry, or advanced general chemistry laboratory. Journal of Chemical Education 87, 526–527. https://doi.org/10.1021/ed8001607

Osman, A., Makris, D.P., and Kefalas, P. (2008). Investigation on biocatalytic properties of a peroxidase-active homogenate from onion solid wastes: An insight into quercetin oxidation mechanism. Process Biochemistry 43, 861-867. https://doi.org/10.1016/j.procbio.2008.04.003

Palade, L.M., Croitoru, C., and Arnous, A. (2019). Preliminary assessment for the synthesis of lignin-type molecules using crude onion peroxidase. Chemical Papers 73, 801–810. https://doi.org/10.1007/s11696-018-0651-z

Quideau, S., Deffieux, D., and Pouységu, L. (2014). Oxidative Coupling of Phenols and Phenol Ethers. In Comprehensive Organic Synthesis II, (P. Knochel and G.A. Molander, eds.), Pp 656–740. 2nd Ed., Elsevier, Amsterdam.

Rathnamsamy, S., Singh, R., Auxilia, R., and Vedhahari, B.N. 2014. Biotechnology an Indian Journal 9, 160-165.

Rodrigues, L.C., Barbosa-F. J.M., Gomes, S.D., Pereira, F.V., André de Araujo, L., Herrera, I., and Mioso, R. (2017). Formation of bioactive benzofuran via oxidative coupling, using coconut water (Cocos nucifera L.) as biocatalyst. Organic Communications 10, 72–78. https://doi.org/10.25135/acg.oc.10.16.11.449

Saliu, F., Tolppa, E., Zoia, L., and Orlandi, M. (2011). Horseradish peroxidase catalyzed oxidative cross-coupling reactions: the synthesis of ‘unnatural’ dihydrobenzofuran lignans. Tetrahedron Letters 52, 3856-3860. https://doi.org/10.1016/j.tetlet.2011.05.072

Sánchez-Carvajal, A.L., Alatorre-Santamaría, S., Valerio-Alfaro, G., Hernández-Vázquez, L., and Navarro-Ocaña, A. (2018). Waste residues from Opuntia ficus indica for peroxidase-mediated preparation of phenolic dimeric compounds. Biotechnology Reports 20, 1–7. https://doi.org/10.1016/j.btre.2018.e00291

Setälä, H., Pajunen, A., Kilpeläinen, I., and Brunow, G. (1994). Horse radish peroxidase-catalysed oxidative coupling of methyl sinapate to give diastereoisomeric spiro dimers. Journal of the Chemical Society, Perkin Trans 1, 1163–1165. https://doi.org/10.1039/P19940001163

Silva, F.A.M., Borges, F., and Guimarães, C. (2000). Phenolic acids and derivatives: studies on the relationship among structure, radical scavenging activity and physicochemical parameters. Journal of Agricultural and Food Chemistry 48, 2122–2126. https://doi.org/10.1021/jf9913110

Yu, J., Taylor K.E., Zou, H., Biswas, N., Bewtra J.K. (1994). Phenol conversion and dimeric intermediates in horseradish peroxidase-catalyzed phenol removal from water. Environmental Science and Technology 28, 2154-2160. https://doi.org/10.1021/es00061a025

Zhi, L.F., Li, Q.X., and Li, Y.L. (2008). A novel application of horseradish peroxidase: oxidation of alcohol ethoxylate to alkylether carboxylic acid. Chinese Chemical Letters 19, 1411–1414. https://doi.org/10.1016/j.cclet.2008.09.030

Zhou, Y., Gao, G., Li, H., and Qu, J. (2008). A convenient method to reduce hydroxyl-substituted aromatic carboxylic acid with NaBH4/Me2SO4/B(OME)3. Tetrahedron Letters 49, 3260-3263. https://doi.org/10.1016/j.tetlet.2008.03.078

Published
2022-06-29
How to Cite
Navarro, A., Gimeno, M., Alatorre-Santamaría, S., & Navarro-Ocaña, A. (2022). Benign and straightforward synthesis of lignan-type dimers using crude peroxidase from red radish (Raphanus sativus var sativus). Revista Mexicana De Ingeniería Química, 21(2), Bio2747. https://doi.org/10.24275/rmiq/Bio2747
Section
Biotechnology