Drying kinetics of Cecina from Yecapixtla using a forced flow indirect solar dryer

  • A. Tlatelpa-Becerro Escuela de Estudios Superiores de Yecapixtla-UAEM https://orcid.org/0000-0002-4891-4405
  • R. Rico-Martínez
  • M. Cárdenas-Manríquez
  • G. Urquiza
  • L.L. Castro-Gómez
  • F.B. Alarcón-Hernández
  • C. Torres
  • E. Montiel
Keywords: Drying kinetics, efffective diffusivity, solar dryer, cecina from Yecapixtla

Abstract

This study presents the drying behavior of cecina from Yecapixtla Morelos through an indirect solar dryer to obtain the drying kinetics. The behavior of the drying kinetics was examined, observing significant effects related to the levels of pH, salinity, and density of the cecina. The effective diffusion coefficients Deff were 5.673x10-9, 2.644x10-9, 2.133x10-8 for three samples corresponding to different days of elaboration. Artisanal dry cecina samples are compared versus the dry cecina of this study. The results showed a higher concentration of salinity and a lower pH of the dry cecina of this study versus the dry artisanal cecina. Solar drying through the indirect dryer present in this work is a viable alternative to give added value to the production of cecina from Yecapixtla in Morelos, Mexico.

References

Ahmat, T., Barka, M., Aregba, A. W., & Bruneau, D. (2015). Convective drying kinetics of fresh beef: an experimental and modeling approach. Journal of Food Processing and Preservation, 39(6), 2581–2595. https://doi.org/10.1111/jfpp.12508

Aksoy, A., Karasu, S., Akcicek, A., & Kayacan, S. (2019). Effects of different drying methods on drying kinetics, microstructure, color, and the rehydration ratio of minced meat. Foods, 8(6). https://doi.org/10.3390/foods8060216

Apata, E. S., Osidibo, O. O., Apata, O. C., & Okubanjo, A. O. (2013). Effects of different solar drying methods on quality attributes of dried meat product (Kilishi). Journal of Food Research, 2(1), 80. https://doi.org/10.5539/jfr.v2n1p80

Bala, B. K., & Debnath, N. (2012). Solar drying technology: potentials and developments. Journal of Fundamentals of Renewable Energy and Applications, 2, 1–5. https://doi.org/10.4303/jfrea/r120302

Barati, E. and Esfahani, J.A. (2012). Mathematical simulation of convective drying: Spatially distributed temperature and moisture in carrot slab. International Journal of Thermal Sciences 56, 86 – 94. https://doi.org/10.1016/j.ijthermalsci.2012.01.003

Chaouch, W. B., Khellaf, A., Mediani, A., Slimani, M. E. A., Loumani, A., & Hamid, A. (2018). Experimental investigation of an active direct and indirect solar dryer with sensible heat storage for camel meat drying in Saharan environment. Solar Energy, 174, 328–341. https://doi.org/10.1016/j.solener.2018.09.037

Çiftçioğlu, G. A., Kadırgan, F., Kadırgan, M. A. N., & Kaynak, G. (2020). Smart agriculture through using cost-effective and high-efficiency solar drying. Heliyon, 6(2). https://doi.org/10.1016/j.heliyon.2020.e03357

Crank, J. (1975). The Mathematics of Diffusion. Oxford University Press, London.

Dufera, L. T., Hofacker, W., Esper, A., & Hensel, O. (2021). Physicochemical quality of twin layer solar tunnel dried tomato slices. Heliyon, 7(5). https://doi.org/10.1016/j.heliyon.2021.e07127

Ekechukwu, V., Norton, B., Anyanwu, E. E., Onyegegbu, S., Ekechukwu, O. v, & Norton, B. (1995). Review of solar-energy drying systems ii: an overview of solar drying technology. Energy conversion & Management, 40(99), 615-655. https://www.researchgate.net/publication/283089795

El-Beltagy, A., Gamea, G. R., & Essa, A. H. A. (2007). Solar drying characteristics of strawberry. Journal of Food Engineering, 78(2), 456–464. https://doi.org/10.1016/j.jfoodeng.2005.10.015

Elmas, F., Bodruk, A., Köprüalan, Ö., Arıkaya, Ş., Koca, N., Serdaroğlu, F. M., Kaymak-Ertekin, F., & Koç, M. (2020). Drying kinetics behavior of turkey breast meat in different drying methods. Journal of Food Process Engineering, 43(10). https://doi.org/10.1111/jfpe.13487

Félix Urieta, L., Félix Urieta, D., De, M., Salud, L., Lozano, R., Danilo, R., Medina, M., Manuel, A., & García, T. (n.d.). Análisis comparativo de carne y productos cárnicos de cabrito Alpino Francés y Alpino Francés. Técnica Pecuaria en México 39(3) 237-244.

Figueroa-Garcia, E., Farias-Cervantes, V., Segura-Castruita, M., Andrade-Gonzalez, I., Montero-Cortés, M., & Chávez-Rodríguez, A. (2020). Using artificial neural networks in prediction of the drying process of foods that are rich in sugars. Revista Mexicana De Ingeniería Química, 20(1), 161-171. https://doi.org/10.24275/rmiq/Sim1403

Fudholi, A., Sopian, K., Yazdi, M. H., Ruslan, M. H., Gabbasa, M., & Kazem, H. A. (2014). Performance analysis of solar drying system for red chili. Solar Energy, 99, 47–54. https://doi.org/10.1016/j.solener.2013.10.019

Fuentes-Salinas, M., Luna-Sánchez, D., Osorio-Suárez, J., & Corona-Islas, J. (2003). Construcción y validación de un secador solar para madera aserrada. Revista Chapingo Serie Ciencias Forestales y del Ambiente 9(2), 171-176.

García-Valladares, O., Cesar-Munguía, A., López-Vidaña, E., Castillo-Téllez, B., Ortíz-Sánchez, C., Lizama-Tzec, F., & Domínguez-Niño, A. (2022). Effect by using a modified solar dryer on physicochemical properties of carambola fruit (Averrhoa Carambola L.). Revista Mexicana De Ingeniería Química, 21(1), Alim2650. https://doi.org/10.24275/rmiq/Alim2650

Jha, A., & Tripathy, P. P. (2021). Recent Advancements in Design, Application, and Simulation Studies of Hybrid Solar Drying Technology. In Food Engineering Reviews 13(2) 375–410. Springer. https://doi.org/10.1007/s12393-020-09223-2

Kamil Salihoglu, N., Pinarli, V., & Salihoglu, G. (2007). Solar drying in sludge management in Turkey. Renewable Energy 32(10), 1661–1675. https://doi.org/10.1016/j.renene.2006.08.001

Kučerová, I., Marek, Š., & Banout, J. (2018). Solar Drying and Sensory Attributes of Eland (Taurotragus oryx) Jerky. Journal of Food Quality, 2018. https://doi.org/10.1155/2018/1067672

García, A.L., Brugnini, G., Rodríguez, S. and Mir, A. (2015). Vida útil de carne fresca de res envasada al vacío a 0°C y +4°C. Producción Agropecuaria y Desarrollo Sostenible 4, 27-45.

Nikola, L.K. and Rosemary, W. (2006). Does It Look Cooked? A Review of Factors That Influence Cooked Meat Color. Journal of Food Science, 71(4), 31-40.

Lingayat, A., Chandramohan, V. P., & Raju, V. R. K. (2017). Design, development and performance of indirect type solar dryer for banana drying. Energy Procedia, 109, 409–416. https://doi.org/10.1016/j.egypro.2017.03.041

Mewa, E. A., Okoth, M. W., Kunyanga, C. N., & Rugiri, M. N. (2018). Drying modelling, moisture diffusivity and sensory quality of thin layer dried beef. Current Research in Nutrition and Food Science, 6(2), 552–565. https://doi.org/10.12944/CRNFSJ.6.2.29

Mewa, E. A., Okoth, M. W., Kunyanga, C. N., & Rugiri, M. N. (2019). Experimental evaluation of beef drying kinetics in a solar tunnel dryer. Renewable Energy, 139, 235–241. https://doi.org/10.1016/j.renene.2019.02.067

Nelli, S.S., Mantulak, M.L. Feltan, C.M and Bresciani, J.C. (2021). Medición de variables de experimentación en un prototipo de secador solar para madera. Revista de Ciencia Tecnología e Innovación, 3(2), 9-21.

Nguyen, H.-B., & Nguyen, H. (2014). A study on beef drying regime towards sustainable energy. Asia Pacific Journal of Sustainable Agriculture Food and Energy (APJSAFE), 2(2), 41-46. Journal online http://journal.bakrie.ac.id/index.php/APJSAFE

Pirasteh, G., Saidur, R., Rahman, S. M. A., & Rahim, N. A. (2014). A review on development of solar drying applications. Renewable and Sustainable Energy Reviews 31, 133–148. https://doi.org/10.1016/j.rser.2013.11.052

Pruengam, P., Pathaveerat, S., & Pukdeewong, P. (2021). Fabrication and testing of double-sided solar collector dryer for drying banana. Case Studies in Thermal Engineering, 27. https://doi.org/10.1016/j.csite.2021.101335

Rao, M. A., Rizvi, S. S. H. and Datta, A.K. (2055). Engineering Properties of Food. Taylor and Francis, New York.

Ribeiro, F. A., Lau, S. K., Furbeck, R. A., Herrera, N. J., Henriott, M. L., Bland, N. A., Fernando, S. C., Subbiah, J., Sullivan, G. A., & Calkins, C. R. (2021). Ultimate pH effects on dry-aged beef quality. Meat Science, 172. https://doi.org/10.1016/j.meatsci.2020.108365

Sahoo, M., Titikshya, S., Aradwad, P., Kumar, V., & Naik, S. N. (2022). Study of the drying behaviour and color kinetics of convective drying of yam (Dioscorea hispida) slices. Industrial Crops and Products, 176. https://doi.org/10.1016/j.indcrop.2021.114258

Salehi, F. and Satorabi, M. (2021). Influence of Infrared Drying on Drying Kinetics of Apple Slices Coated with Basil Seed and Xanthan Gums. International Journal of Fruit Science 21, 519 – 527. https://doi.org/10.1080/15538362.2021.1908202

Solís Rodríguez, L. E., Cerón Cardeña, M. A., & Ahumada, I. G. (2003). Diseño y operación de una estufa solar para secar madera. Ingeniería, Revista Académica 7(3), 35-48.

Subbian, V., Nadanakumar, V., Christupaul, R., & Kalidasa Murugavel, & K. (2019). Mathematical and experimental analysis of solar tunnel dryer for drying beef as a biological product. International Journal of Mechanical and Production 9(4), 489-498.

Srikiatden, J. and Roberts, J.S. (2008). Predicting moisture profiles in potato and carrot during convective hot air drying using isothermally measured effective diffusivity. Journal of Food Engineering 84, 516–525. https://doi.org/10.1016/j.jfoodeng.2007.06.009

Tirado, D. F., Montero, P. M., & Acevedo, D. (2015). Estudio comparativo de métodos empleados para la determinación de humedad de varias matrices alimentarias. Informacion Tecnologica, 26(2), 3–10. https://doi.org/10.4067/S0718-07642015000200002

Published
2022-07-05
How to Cite
Tlatelpa-Becerro, A., Rico-Martínez, R., Cárdenas-Manríquez, M., Urquiza, G., Castro-Gómez, L., Alarcón-Hernández, F., Torres, C., & Montiel, E. (2022). Drying kinetics of Cecina from Yecapixtla using a forced flow indirect solar dryer. Revista Mexicana De Ingeniería Química, 21(2), Alim2750. https://doi.org/10.24275/rmiq/Alim2750
Section
Food Engineering

Most read articles by the same author(s)