Pre-evaluation of contaminated soil for oil field reactivation in Moloacan, Veracruz, Mexico

Preliminary study of environmental impacts on soils of Moloacán, Veracruz

  • M.M. Yzquierdo-Ruíz
  • S.A. Torres-Sánchez
  • I.M. De la Garza-Rodríguez
  • M.E. Ojeda-Morales
  • E. Hernández-Nuñez
  • C.E. Lobato-García
  • M.A. Hernández-Rivera
  • M. Zurita-Macias-Valadez
  • C.M. Morales-Bautista
Keywords: diagnostic, heavy metals, hydrocarbons, restauration, regulations.

Abstract

This document presents studies to establish an Environmental Baseline for the oil sector in 13 wells in the Moloacán Field, in Veracruz, México regarding hydrocarbons in soils.  Four factors were taken into account: characteristics found in the field, methods for the determination of hydrocarbons (with two methods: the Soxhlet and the Petroflag), effects on fertility properties, and heavy metals content. The results show spills in every well with a high percentage of heavy fractions (mainly polar). However, these are not entirely visible because they are below or between the rhizosphere. Also, higher concentrations of hydrocarbons were found in specific sites such as old incinerators and waste pits. In the waste pits, pollutants had contact with the aquifer. In addition, in the determination of hydrocarbons, the Soxhlet method showed better results than the Petroflag one. Likewise, a relationship between these pollutants and the negative effects on soil properties, such as the increase in densities, electrical conductivity, and sands, as well as the decrease in field capacity and clays were found. Also, pH and salinity increased when the hydrocarbons exceeded the permissible limits (>4400 mg·kg-1). Finally, metals such as Cr, V, Ba, Hg, Ni, Pb, and Cd were also found, but only Ni was found at dangerous levels for agricultural use.

References

Adams, R. H. (2004). Chemical-biological stabilization of hydrocarbon-contaminated soil and drilling cuttings in tropical Mexico. Land Contamination & Reclamation, 12(4), 349-361. https://doi.org/10.2462/09670513.647

Adams R.H., Álvarez-Ovando, A.L. and Castañón, N.G. (2015). Effect of hydrocarbon concentration of pasture production (Brachiaria humidicola) in Texistepec, Veracruz. Phyton, International Journal of Experimental Botany 84(1), 222-232. Available at: http://ppct.caicyt.gov.ar/index.php/phyton/article/view/8131

Adams, R.H., Cerecedo-López R.A., Alejandro-Álvarez, L.A., Domínguez-Rodríguez V.I. and Nieber, J.L. (2016). Treatment of water-repellent petroleum-contaminated soil from Bemidji, Minnesota, by alkaline desorption. International Journal of Environmental Science and Technology 13(9), 2249-2260. https://doi.org/10.1007/s13762-016-1058-4

Agrelli, D., Caporale, A. G. and Adamo, P. (2020). Assessment of the Bioavailability and Speciation of Heavy Metal (loid) s and Hydrocarbons for Risk-Based Soil. Remediation. Agronomy 10(9), 1440. https://doi.org/10.3390/agronomy10091440}

Al-Dhabaan, F.A. (2019) Morphological, biochemical and molecular identification of petroleum hydrocarbons biodegradation bacteria isolated from oil polluted soil in Dhahran, Saud Arabia. Saudi Journal of Biological Sciences 26(6), 1247-1252 https://doi.org/10.1016/j.sjbs.2018.05.029

Aljuboury, D.A.D.A., Palaniandy, P., Abdul, A. and Feroz, S. (2017). Treatment of petroleum wastewater by conventional and new technologies-A review. Global Nest Journal 19, 439-452. Available at: https://journal.gnest.org/sites/default/files/Submissions/gnest_02239/gnest_02239_published.pdf

Álvarez-Coronel, G., Domínguez-Rodríguez, V. I., Adams, R. H., López, D. J., & Zavala-Cruz, J. (2020). The Role of Soil Clays in Mitigating or Exacerbating Impacts to Fertility in Crude Oil-contaminated Sites. Pertanika Journal of Tropical Agricultural Science 43(2), 119-139. Available at: https://core.ac.uk/download/pdf/324186463.pdf#page=41

Antonio, G.V.L. and Georgina, F.V. (2014). Health risk assessment of zone 7 contaminated with benzene in the environmental liability generated by the “March 18th Ex-Refinery” in Mexico City. Ingeniería, Investigación y Tecnología 15(3), 419-428. https://doi.org/10.1016/S1405-7743(14)70351-8

Arguijo-Portillo, N.V., Guerrero-Peña, A., Domínguez-Rodríguez, V.I., Carrillo-Ávila, E. and Zavala-Cruz, J. (2019). Modelos de calibración para la cuantificación espectrofotométrica de hidrocarburos totales del petróleo en suelo. Revista Internacional de Contaminación Ambiental 35(2), 469-479. https://doi.org/10.20937/RICA.2019.35.02.17

Asghar, H.N., Rafique, H.M., Zahir, Z.A., Khan, M.Y., Akhtar, M.J., Naveed, M. and Saleem, M. (2016). Petroleum hydrocarbons-contaminated soils: Remediation approaches. In Soil Science: Agricultural and Environmental Prospectives, ( J. Akhtar and M. Sabir, eds.), Pp. 105-129. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-34451-5_1

Beck, H., Regidor, C.B., Iber, P. (2020). Year One of AMLO's Mexico. Dissent 67(1), 109-118. https://doi.org/10.1353 / dss.2020.0016

Botello, A. V., de la Lanza Espino, G., Fragoso, S. V. and Velez, G. P. (2019). Pollution issues in coastal lagoons in the gulf of Mexico. In Lagoon Environments Around the World-A Scientific Perspective, ( A. J. Manning, eds.), Pp. 3-21, Intech Open, United Kingdom. https://doi.org/10.5772/Itechopen. 775591

Castillo-Campos, E., Mugica-Álvarez, V., Roldán-Carillo, T., Olguín-Lora, P., & Castorena-Cortés, G. (2021). Modification of wettability and reduction of interfacial tension mechanisms involved in the release and enhanced biodegradation of heavy oil by a biosurfactant. Revista Mexicana De Ingeniería Química, 20(3), IA2427-IA2427. https://doi.org/10.24275/rmiq/IA2427

Challenger, A., Cordova, A., Chavero, E. L., Equihua, M. and Maass, M. (2018). Opportunities and obstacles to socioecosystem-based environmental policy in Mexico. Ecology and Society 23(2), 21. https://doi.org/10.2307/26799095

Cipullo, S., Nawar, S., Mouazen, A. M., Campo-Moreno, P. and Coulon, F. (2019). Predicting bioavailability change of complex chemical mixtures in contaminated soils using visible and near-infrared spectroscopy and random forest regression. Scientific Reports 9(1), 1-12. https://doi.org/10.1038/s41598-019-41161-w

Domínguez-Rodríguez, V. I., Adams, R. H., Vargas-Almeida, M., Zavala-Cruz, J. and Romero-Frasca, E. (2020). Fertility Deterioration in a Remediated Petroleum-Contaminated Soil. International Journal of Environmental Research and Public Health 17(2), 382. https://doi.org/10.3390/ijerph17020382

Douglas, R. K., Nawar, S., Alamar, M. C., Coulon, F. and Mouazen, A. M. (2019). The application of a handheld mid-infrared spectrometry for rapid measurement of oil contamination in agricultural sites. Science of the Total Environment 665, 253-261. https://doi.org/10.1016/j.scitotenv.2019.02.065

Fayeulle, A., Veignie, E., Schroll, R., Munch, J. C. and Rafin, C. (2019). PAH biodegradation by telluric saprotrophic fungi isolated from aged PAH-contaminated soils in mineral medium and historically contaminated soil microcosms. Journal of Soils and Sediments 19(7), 3056-3067. https://doi.org/10.1007/s11368-019-02312-8

Filatov, D.A., Kopytov, M.A., Ovsyannikova, V.C. and Elchaninova, E.A. (2018). Microbiological Oxidation of High Viscosity Bitumen in Soil. Eurasian Chemico-Technological Journal 20(2), 159-168. https://doi.org/10.18321/ectj692

Gautam, P., Bajagain, R. and Jeong, S. W. (2020). Combined effects of soil particle size with wash time and soil-water ratio on removal of total petroleum hydrocarbons from fuel contaminated soil. Chemosphere 250, 126206. https://doi.org/10.1016/j.chemosphere.2020.126206

Gómez-Mellado, A.Y., Morales-Bautista, C.M., De la Garza-Rodríguez, I.M., Torres-Sánchez, S.A. and Sánchez-Lombardo, I. (2020). Evaluation of two remediation techniques applied to a site impacted by petroleum production waters. Revista Terra Latinoamericana 38(1), 77-89. https://doi.org/10.28940/terra.v38i1.564

González-Mille, D.J., Ilizaliturri-Hernández, C.A., Espinosa-Reyes, G., Cruz-Santiago, O., Cuevas-Díaz, M.D., Del Campo C.C.M. and Flores-Ramírez, R. (2019). DNA damage in different wildlife species exposed to persistent organic pollutants (POPs) from the delta of the Coatzacoalcos river, Mexico. Ecotoxicology and Environmental Safety 180, 403-411. https://doi.org/10.1016/j.ecoenv.2019.05.030

Guarino, C., Spada, V. and Sciarrillo, R. (2017). Assessment of three approaches of bioremediation (Natural Attenuation, Landfarming and Bioagumentation–Assistited Landfarming) for a petroleum hydrocarbons contaminated soil. Chemosphere 170, 10-16. https://doi.org/10.1016/j.chemosphere.2016.11.165

Guzmán-Osorio, F.J., Adams, R.H., Domínguez-Rodríguez, V.I., Lobato-García, C.E., Guerrero-Peña, A., Barajas-Hernández, J.R. and Baltierra-Trejo, E. (2019). Alternative method for determining API degrees of petroleum in contaminated soil by FTIR. Egyptian Journal of Petroleum 29(1), 29-44. https://doi.org/10.1016/j.ejpe.2019.10.002

Haghollahi, A., Fazaelipoor, M. H., and Schaffie, M. (2016). The effect of soil type on the bioremediation of petroleum contaminated soils. Journal of Environmental Management 180, 197-201. https://doi.org/10.1016/j.jenvman.2016.05.038

Hewelke, E. and Gozdowski, D. (2020). Hydrophysical properties of sandy clay contaminated by petroleum hydrocarbon. Environmental Science and Pollution Research 27, 9697-9706. https://doi.org/10.1007/s11356-020-07627-5

Hung, A. M., and Fini, E. H. (2019). Absorption spectroscopy to determine the extent and mechanisms of aging in bitumen and asphaltenes. Fuel 242, 408-415. https://doi.org/10.1016/j.fuel.2019.01.085

Imanian, H., Kolahdoozan, M. and Zarrati, A. R. (2017). Vertical dispersion in oil spill fate and transport models. Journal of Hydrosciences and Environment 1(2), 21-33. https://doi.org/10.22111 / JHE.2017.3355

Interiano-López, M. L., Ramírez-Coutiño, V. A., Godinez-Tovar, L. A., Zamudio-Pérez, E., & Rodríguez-Valadez, F. J. (2019). Bioremediation methods assisted with humic acid for the treatment of oil-contaminated drill cuttings. Revista Mexicana de Ingeniería Química, 18(3), 929-937. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Interiano

Iryna, A. and Leonid, P. (2016). The immobilization of heavy metals during drilling sludge utilization. Environmental Technology & Innovation 6, 123-131. https://doi.org/10.1016/j.eti.2016.08.004

Ite, A.E. and Ibok, U.J. (2019). Role of plants and microbes in bioremediation of petroleum hydrocarbons contaminated soils. International Journal of Environmental Bioremediation & Biodegradation 7(1), 1-19. https://doi.org/10.12691/ijebb-7-1-1

Jiménez Hernández, V. and Guerra Sánchez, R. (2016). Obtención de un medio enriquecido para hacer más eficiente la biodisponibilidad de los hidrocarburos intemperizados en un suelo costero. Revista Internacional de Contaminación Ambiental 32(4), 413-424. https://doi.org/10.20937/RICA.2016.32.04.05

Khudur, L. S., Gleeson, D. B., Ryan, M. H., Shahsavari, E., Haleyur, N., Nugegoda, D. and Ball, A. S. (2018). Implications of co-contamination with aged heavy metals and total petroleum hydrocarbons on natural attenuation and ecotoxicity in Australian soils. Environmental Pollution 243, 94-102. https://doi.org/10.1016/j.envpol.2018.08.040

Kong, D., Hoelen, T., Mcmillen, S., Vidra, T., Chitra, S., Saputra, D. and Armpriester, C. (2017). Rapid Field Analytical Methods for Total Petroleum Hydrocarbons. Presentation SPE-185195-MS, April 03 2017. Kuala Lumpur, Malaysia. Security, Environment and Social Responsibility Conference. Society of Petroleum Engineers. https://doi.org/10.2118/185195-MS

Kujawska, J. and Pawłowska, M. (2018). Effects of soil-like materials mix from drill cuttings, sewage sludge and sawdust on the growth of Trifolium pratense L. and transfer of heavy metals. Journal of Ecological Engineering 19(6), 225-230. https://doi.org/10.12911/22998993/91884

Kumar, M., Bolan, N. S., Hoang, S. A., Sawarkar, A. D., Jasemizad, T., Gao, B., ... & Rinklebe, J. (2021). Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: To immobilize, mobilize, or degrade?. Journal of Hazardous Materials, 420, 126534. https://doi.org/10.1016/j.jhazmat.2021.126534

Kuppusamy, S., Maddela, N.R., Megharaj, M. and Venkateswarlu, K. (2020). Approaches for Remediation of Sites Contaminated with Total Petroleum Hydrocarbons. In Total Petroleum Hydrocarbons, (S. Kuppusamy, N.R. Maddela, M. Megharaj, and K. Venkateswarlu. eds), Pp. 167-205. Springer Publishing Cham, Switzerland AG. https://doi.org/10.1007/978-3-030-24035-67

Li, Y., Yang, H., Chen, L. and Cao, Y. (2019). Sequestration Specificity of Single or Co-existing Benzene, 1, 3, 5-Trimethylbenzene, and Naphthalene in Soil. Journal of Soil Science and Plant Nutrition 19(2), 299-304. https://doi.org/10.1007/s42729-019-00029-8

Luke, S.G. (2017) Evaluating significance in linear mixed-effects models in R. Behavior Research Methods 49(4), 1494-1502. https://doi.org/10.3758/s13428-016-0809-y

Machain-Castillo, M. L., Ruiz-Fernández, A. C., Alonso-Rodríguez, R., Sanchez-Cabeza, J. A., Gío-Argáez, F. R., Rodríguez-Ramírez, A. and Hernández-Becerril, D. U. (2020). Anthropogenic and natural impacts in the marine area of influence of the Grijalva–Usumacinta River (Southern Gulf of Mexico) during the last 45 years. Marine Pollution Bulletin 156, 111245. https://doi.org/10.1016/j.marpolbul.2020.111245

Mao, J., Nierop, K.G., Dekker, S.C., Dekker, L.W. and Chen, B. (2019). Understanding the mechanisms of soil water repellency from nanoscale to ecosystem scale: a review. Journal of Soils and Sediments 19(1), 171-185. https://doi.org/10.1007/s11368-018-2195-9

Marín-García, D.C., Adams, R.H. and Hernández-Barajas, R. (2016). Effect of crude petroleum on water repellency in a clayey alluvial soil. International Journal of Environmental Science and Technology 13(1), 55-64. https://doi.org/10.1007/s13762-015-0838-6

McIntosh, P., Schulthess, C.P., Kuzovkina, Y.A., Guillard, K. (2017). Bioremediation and phytoremediation of total petroleum hydrocarbons (TPH) under various conditions. International Journal of Phytoremediation 19(8), 755-764. https://doi.org/10.1080/15226514.2017.1284753

Mendoza-Carranza, M., Sepúlveda-Lozada, A., Dias-Ferreira, C., Geissen, V. (2016). Distribution and bioconcentration of heavy metals in a tropical aquatic food web: A case study of a tropical estuarine lagoon in SE Mexico. Environmental Pollution 210, 155-165. https://doi.org/10.1016/j.envpol.2015.12.014

Morales-Bautista, C. M., Adams, R. H., Guzmán-Osorio, F., & Marín-García, D. (2013). Dilution-extrapolation hydrometer method for easy determination of API gravity of heavily weathered hydrocarbons in petroleum contaminated soil. Energy and Environment Research 3(1). https://doi.org/115. doi:10.5539/eer.v3n1p115

Morales-Bautista, C. M., Adams, R. H., Hernández-Barajas, J. R., Lobato-García, C. E., & Torres-Torres, J. G. (2016). Characterization of fresh and weathered petroleum for potential impacts to soil fertility. International Journal of Environmental Science and Technology, 13(11), 2689-2696. https://doi.org/10.1007/s13762-016-1097-x

Morales-Bautista, C.M., Méndez-Olán, C., López-Martínez, S., Ojeda-Morales, M.E. (2020) Design of Experiments to Optimize Soxhlet-TPH Method to Establish Environmental Diagnostics of Polluted Soil: Optimization of the Soxhlet-TPH Method by DOE. In Design of Experiments for Chemical, Pharmaceutical, Food, and Industrial Applications, (E. Carrillo-Cedillo, J. Rodríguez-Ávila, K. Arredondo-Soto, J.M. Cornejo-Bravo, eds.), Pp. 33-52. Publisher: IGI Global, California, México. https://doi.org/10.4018 / 978-1-7998-1518-1.ch002

Norouzi, N. and Fani, M. (2020). The impacts of the novel corona virus on the oil and electricity demand in Iran and China. Journal of Energy Management and Technology 4(4), 36-48. https://doi.org/10.22109 / JEMT.2020.222593.1232

NRCS Soils USDA. Soil Texture Calculator. Link: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167.

O’Brien, P.L., De Sutter, T.M., Casey, F.X., Wick, A.F. and Khan, E. (2017). Evaluation of soil function following remediation of petroleum hydrocarbons. A review of current remediation techniques. Current Pollution Reports 3(3), 192-205. https://doi.org/10.1007/s40726-017-0063-7

Oliaei, M., and Heidarpoor, M. (2015). OIL Contamination Propagation Patterns In Soils And Efficiency Evaluation Of Pumping In-Situ Remediation Method. Iranian Journal of Science and Technology Transactions of Civil Engineering 39(C2), 379-384. https://doi.org/10.22099 / IJSTC.2015.3141

Palma-López, D. J., Jiménez-Ramírez, R., Zavala-Cruz, J., Bautista-Zúñiga, F., Gavi-Reyes, F. and Palma-Cancino, D. Y. (2017). Actualización de la clasificación de suelos de Tabasco, México. Agro Productividad 10(12), 29-35. Available at: https://core.ac.uk/download/pdf/249319925.pdf

Pérez-Hernández, I., Ochoa-Gaona, S., Adams, R.H., Rivera-Cruz, M.C., Pérez-Hernández, V., Jarquín-Sánchez, A. and Martínez-Zurimendi, P. (2017). Growth of four tropical tree species in petroleum-contaminated soil and effects of crude oil contamination. Environmental Science and Pollution Research 24(2), 1769-1783. https://doi.org/10.1007/s11356-016-7877-5

Pikovskii, Y. I., Korotkov, L. A., Smirnova, M. A. and Kovach, R. G. (2017). Laboratory analytical methods for the determination of the hydrocarbon status of soils (a review). Eurasian Soil Science 50(10), 1125-1137. https://doi.org/10.1134/S1064229317100076

Pulster, E. L., Gracia, A., Armenteros, M., Toro-Farmer, G., Snyder, S. M., Carr, B. E. and Murawski, S. A. (2020). A first comprehensive Baseline of Hydrocarbon pollution in Gulf of Mexico fishes. Scientific Reports 10(1), 1-14. https://doi.org/10.1038/s41598-020-62944-6

Rakhmatullin, I.Z., Efimov, S.V., Tyurin, V.A., Al-Muntaser, A.A., Klimovitskii, A.E., Varfolomeev, M.A. and Klochkov, V.V. (2018). Application of high-resolution NMR (1H and 13C) and FTIR spectroscopy for characterization of light and heavy crude oils. Journal of Petroleum Science and Engineering 168, 256-262. https://doi.org/10.1016/j.petrol.2018.05.011

Riveroll-Larios, J., Escalante-Espinosa, E., Fócil-Monterrubio, R. L. and Díaz-Ramírez, I. J. (2015). Biological activity assessment in Mexican tropical soils with different hydrocarbon contamination histories. Water, Air, & Soil Pollution 226(10), 353. https://doi.org/10.1007/s11270-015-2621-1

Reyes, Y., Vergara, I., Torres, O., Lagos, M.D. and Jimenez, E.E.G. (2016). Contaminación por metales pesados: Implicaciones en salud, ambiente y seguridad alimentaria. Ingeniería Investigación y Desarrollo: I2+D 16(2), 66-77. https://doi.org/10.19053/1900771X.v16.n2.2016.5447

Rodríguez, C. H., Quintana, L. J. O., Rodríguez, O. A. and Cordero, L. S. (2019). Emergencia y desarrollo del maíz (Zea mays L.) en un suelo contaminado con Hidrocarburos Totales del Petróleo en fase inicial ya 340 días de biorremediación en biopilas. Revista Científica Agroecosistemas 7(2), 94-102. Available at: https://aes.ucf.edu.cu/index.php/aes/article/view/297

Ruiz-Fernández, A.C., Sanchez-Cabeza, J.A., Pérez-Bernal, L.H. and Gracia, A. (2019). Spatial and temporal distribution of heavy metal concentrations and enrichment in the southern Gulf of Mexico. Science of the Total Environment 651, 3174-3186. https://doi.org/10.1016/j.scitotenv.2018.10.109

Saadati, M., Soleimani, M., Sadeghsaba, M. and Hemami, M.R. (2020). Bioaccumulation of heavy metals (Hg, Cd and Ni) by sentinel crab (Macrophthalmus depressus) from sediments of Mousa Bay, Persian Gulf. Ecotoxicology and Environmental Safety 191, 109986. https://doi.org/10.1016/j.ecoenv.2019.109986

Samaniego, C.A.B., Rojas, A.M.C, De Leone, M.R. and Rodulfo, A.L.C. (2017). Estandarización del método espectroscópico UV-Visible para la determinación del contenido de asfaltenos en crudos pesados. Revista Ingeniería 27(2), 1-13. Available at: https://revistas.ucr.ac.cr/index.php/ingenieria/article/view/27854

Sánchez, I.L. and Domínguez, E.E.H. (2017). Ronda uno. La implementación de la reforma energética de México. Summa Iuris 5(2), 231-257. https://doi.org/10.21501/23394536.2588

SEMARNAT. (2002). Secretaría del Medio Ambiente y Recursos Naturales. NOM-021-SEMARNAT-2000. Available at: http://legismex.mty.itesm.mx/normas/rn/rn021-02.pdf. Accessed: February 12, 2020.

SEMARNAT. (2013). Secretaría del Medio Ambiente y Recursos Naturales. NOM-138-SEMARNAT/SSA1-2012. Available at: https://www.dof.gob.mx/nota_detalle.php?codigo=5313544&fecha=10/09/2013. Accessed: February 14, 2020.

SEMARNAT. (2007). Secretaría del Medio Ambiente y Recursos Naturales. NOM-147-SEMARNAT/SSA1-2004. Available at: http://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/agenda/PP03/DO950.pdf. Accessed: February 16, 2020

Soto, L. A., Estradas-Romero, A., Salcedo, D. L., Botello, A. V. and Ponce-Vélez, G. (2018). The Hazards of Monitoring Ecosystem Ocean Health in the Gulf of Mexico: A Mexican Perspective. In Monitoring of Marine Pollution, (H. B. Fouzia, eds.), Pp. 33-56. IntechOpen, Croatia. https://doi.org/10.5772/intechopen.76739

Stout, B., Lal, R. and Monger, C. (2016). Carbon capture and sequestration: The roles of agriculture and soils. International Journal of Agricultural and Biological Engineering 9(1), 1-8. https://doi.org/10.3965/j.ijabe.20160901.2280

Thompson, L. A. and Darwish, W. S. (2019). Environmental chemical contaminants in food: review of a global problem. Journal of Toxicology 2019, 1-14. https://doi.org/10.1155/2019/2345283

Trellu, C., Miltner, A., Gallo, R., Huguenot, D., Van Hullebusch, E. D., Esposito, G. and Kästner, M. (2017). Characteristics of PAH tar oil contaminated soils Black particles, resins and implications for treatment strategies. Journal of Hazardous Materials 327, 206-215. https://doi.org/10.1016/j.jhazmat.2016.12.062

Ukpaka, C. P., Lezorghia, S. B. and Nwosu, H. (2020). Crude oil degradation in loamy soil using Neem root extracts: An experimental study. Chemistry International 6(3), 160-167. http://doi.org/10.5281/zenodo.3645478

Tosquy-Valle, O. H., Villar-Sánchez, B., Rodríguez-Rodríguez, J. R., Ibarra-Pérez, F. J., Zetina-Lezama, R., Andrés-Meza, P. and Anaya López, J. L. (2019). Adaptación de genotipos de frijol negro a diferentes ambientes de Veracruz y Chiapas. Revista Mexicana de Ciencias Agrícolas 10(6), 1301-1312. http://doi.org/10.29312/remexca.v10i6.1658

Varjani, S. and Upasani, V. N. (2019). Comparing bioremediation approaches for agricultural soil affected with petroleum crude: A case study. Indian Journal of Microbiology 59(3), 356-364. https://doi.org/10.1007/s12088-019-00814-0

Velázquez-Vázquez, V. W., Gómez, S. A., Gutiérrez-Rojas, M., Díaz-Ramírez, I., & Volke-Sepúlveda, T. (2022). Estimation of hydrocarbon sequestration in soils: influence of the chemical characteristics of humic substances. Revista Mexicana de Ingeniería Química, 21(1), IA2660-IA2660. https://doi.org/10.24275/rmiq/IA2660

Vergeynst, L., Greer, C. W., Mosbech, A., Gustavson, K., Meire, L., Poulsen, K. G. and Christensen, J. H. (2019). Biodegradation, photo-oxidation, and dissolution of petroleum compounds in an Arctic fjord during summer. Environmental Science & Technology 53(21), 12197-12206. https://doi.org/10.1021/acs.est.9b03336

Vogel, J., Balshaw, H.M., Doerr, S.H. and Bryant, R. (2020). Measuring water repellency of individual particles: The new “micro-Wilhelmy Plate Method” and its applicability to soil. Geoderma 371, 114384. https://doi.org/10.1016/j.geoderma.2020.114384

Wang, J., Ding, J., Abulimiti, A. and Cai, L. (2018). Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS–NIR) spectroscopy, Ebinur Lake Wetland, Northwest China. PeerJ 6, e4703. https://doi.org/10.7717/peerj.4703

Wang, C. Q., Lin, X. Y., Zhang, C. and Mei, X. D. (2017). Environmental security control of resource utilization of shale gas' drilling cuttings containing heavy metals. Environmental Science and Pollution Research 24(27), 21973-21983. https://doi.org/10.1007/s11356-017-9703-0

Webster, G. T., Soriano-Disla, J. M., Kirk, J., Janik, L. J., Forrester, S. T., McLaughlin, M. J. and Stewart, R. J. (2016). Rapid prediction of total petroleum hydrocarbons in soil using a hand-held mid-infrared field instrument. Talanta 160, 410-416. https://doi.org/10.1016/j.talanta.2016.07.044

Xing, Z., Tian, K., Du, C., Li, C., Zhou, J. and Chen, Z. (2019). Agricultural soil characterization by FTIR spectroscopy at micrometer scales: depth profiling by photoacoustic spectroscopy. Geoderma 335, 94-103. https://doi.org/10.1016/j.geoderma.2018.08.003

Xu, T., Wang, X., Li, T. and Zhan, X. (2018). Heavy metal pollution of oil-based drill cuttings at a shale gas drilling field in Chongqing, China: A human health risk assessment for the workers. Ecotoxicology and Environmental Safety 165, 160-163. https://doi.org/10.1016/j.ecoenv.2018.08.104

Xu, X., Du, C., Ma, F., Shen, Y., Wu, K., Liang, D. and Zhou, J. (2019). Detection of soil organic matter from laser-induced breakdown spectroscopy (LIBS) and mid-infrared spectroscopy (FTIR-ATR) coupled with multivariate techniques. Geoderma 355, 113905. https://doi.org/10.1016/j.geoderma.2019.113905

Yildiz, S., Sönmez, V. Z., Uğurlu, Ö., Sivri, N., Loughney, S., & Wang, J. (2021). Modelling of possible tanker accident oil spills in the Istanbul Strait in order to demonstrate the dispersion and toxic effects of oil pollution. Environmental Monitoring and Assessment, 193(8), 1-19. https://doi.org/10.1007/s10661-021-09339-w

Yin, Y., Sykes, J. F. and Normani, S. D. (2015). Impacts of spatial and temporal recharge on field-scale contaminant transport model calibration. Journal of Hydrology 527, 77-87. https://doi.org/10.1016/j.jhydrol.2015.04.040

Zamora, A., Ramos, J. and Arias, M. (2012). Effect of oil pollution on chemical and microbiological properties of a savanna soil. Bioagro 24(1), 5-12. Available at: https://dialnet.unirioja.es/servlet/articulo?codigo=5427072

Zahermand, S., Vafaeian, M. and Bazyar, M. H. (2020).Analysis of the physical and chemical properties of soil contaminated with oily (petroleum) hydrocarbons. Earth Sciences Research Journal 24(2), 163-168. https://doi.org/10.15446/esrj.v24n2.76217

Zhang, M., Guo, P., Wu, B. and Guo, S. (2020). Change in soil ion content and soil water-holding capacity during electro-bioremediation of petroleum contaminated saline soil. Journal of Hazardous Materials 387, 122003. https://doi.org/10.1016/j.jhazmat.2019.122003

Ziarati, P., El-Esawi, M., Sawicka, B., Umachandran, K., Mahmoud, A.E.D., Hochwimmer, B. and Vambol, V. (2019). Investigation of Prospects for Phytoremediation Treatment of Soils Contaminated with Heavy Metals. Journal of Medical Discovery 4(2), 1-16. https://doi.org/10.24262/jmd.4.2.19011

Published
2022-06-30
How to Cite
Yzquierdo-Ruíz, M., Torres-Sánchez, S., De la Garza-Rodríguez, I., Ojeda-Morales, M., Hernández-Nuñez, E., Lobato-García, C., Hernández-Rivera, M., Zurita-Macias-Valadez, M., & Morales-Bautista, C. (2022). Pre-evaluation of contaminated soil for oil field reactivation in Moloacan, Veracruz, Mexico. Revista Mexicana De Ingeniería Química, 21(2), IA2753. https://doi.org/10.24275/rmiq/IA2753
Section
Environmental Engineering

Most read articles by the same author(s)