Tropical atmospheric corrosion of galvanized steel, in a light urban atmosphere in the San José valley of Costa Rica

  • J.E. Rodriguez-Yañez Universidad Estatal a Distancia
  • J. Uruchurtu-Chavarin
  • J. Sanabria-Chinchilla
Keywords: atmospheric corrosion, galvanized steel, mathematical modelling, monsoonal climate, air pollutants, rain, time of wetness

Abstract

Costa Rica is an importer of most of the metallic materials it uses. In construction, Galvanized Steel (GS) is one of the most used elements in urban areas, where atmospheric corrosion is the main problem of its environmental deterioration. The area of greatest population and economic activity in Costa Rica is the San José Valley, which has a tropical monsoon climate with low pollution, defined under ISO 9223 as light urban. The present study of the atmospheric corrosion of the GS, proposes a high correlation for simple linear models, with climatic parameters as main components and SO2 as secondary component. Seasonality and sampling sites are partially significant at the beginning of the oxidation process, but this effect is damped over time. The average corrosion rate after 2 years is in the order of 0,4 mm y-1, which represents a low level (C2 according to ISO 9223). Complex annual corrosion models, such as those indicated by ISO 9223, overestimate the real corrosion value.

References

Almeida, E., Morcillo, M., & Rosales, B. (2000). Atmospheric corrosion of zinc. Part 1: Rural and urban atmospheres. British Corrosion Journal, 35:4, 284-288. doi:https://doi.org/10.1179/000705900101501353

Apuy, E. (2016). Caracterización de la Industria Metal Mecánica en Costa Rica. Retrieved from PROCOMER: http://servicios.procomer.go.cr/aplicacion/civ/documentos/Caracterizacion%20de%20la%20industria%20metalmecanica%20costarricense.pdf

ASTM A90/A90M - 2021. (2021). Standard Test Method for Weight [Mass] of Coating on Iron and Steel Articles with Zinc or Zinc-Alloy Coatings. West Conshohocken, PA, USA: American Society for Testing and Materials, International.

ASTM G1 - 03(2017)e1. (2017). Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. West Conshohocken, PA, USA: ASTM International. doi:10.1520/G0001-03R17E01

ASTM G33 - 99(2020). (2020). Standard Practice for Recording Data from Atmospheric Corrosion Tests of Metallic-Coated Steel Specimens. West Conshohocken, PA, USA: ASTM International. doi:ASTM International

ASTM G50-20. (2020). Standard Practice for Conducting Atmospheric Corrosion Tests on Metals. West Conshohocken, PA, 2020: ASTM International. doi:10.1520/G0050-20

ASTM G92 - 20. (2020). Standard Practice for Characterization of Atmospheric Test Sites. West Conshohocken, PA, USA: ASTM International. doi:10.1520/G0092-20

Castaño, J., Botero, C., & Peñaranda, S. (2007). Corrosión atmosférica del zinc en ambientes exteriores e interiores. Revista de Metalurgia, 43 (2) 133-145. doi:https://doi.org/10.3989/revmetalm.2007.v43.i2.60

Chico, B., de la Fuente, D., Díaz, I., Simancas, J., & Morcillo, M. (2017). Annual atmospheric corrosion of carbon steel worldwide. an integration of ISOCORRAG, ICP/UNECE and MICAT Databases. Materials, 10(6):601. doi:https://doi.org/10.3390/ma10060601

Corvo, F., Haces, C., Betancourt, N., Maldonado, L., Veleva, L., Echeverría, M., . . . de Rincón, A. (1997). Atmospheric corrosion in the Caribbean area,. Corrosion Science., 39, 823–833. doi: https://doi.org/10.1016/S0010-938X(96)00138-2

Corvo, F., Perez, T., Martin, Y., Reyes, J., Dzib, L., González-Sánchez, J., & Castañeda, A. (2008). Time of wetness in tropical climate: Considerations on the estimation of TOW according to ISO 9223 standard. Corrosion Science, 50 (1): 206-219. doi:https://doi.org/10.1016/j.corsci.2007.06.012

de la Fuente, D., Castaño, J., & Morcillo, M. (2007). Long-term atmospheric corrosion of zinc. Corrosion Science, 49 (3) 1420-1436,. doi:https://doi.org/10.1016/j.corsci.2006.08.003

Del Angell, E., Vera, R., & Corvo, F. (2015). Atmospheric Corrosion of Galvanised Steel in Different Environments in Chile and Mexico. International Journal of Electrochemical Sciencie, 10, 7985-8004.

Díaz , V., Martínez-Luaces, V., & Guineo-Cobs, G. (2003). Corrosión atmosférica: validación de modelos empleando técnicas estadísticas. Revista Metalurgia, 39(4):243-251. doi:https://doi.org/10.3989/revmetalm.2003.v39.i4.335

DIGECA - MINAE. (2013). Informe de calidad de aire GAM 2012. Retrieved from DIGECA : http://www.digeca.go.cr/informe-calidad-aire

Estado de la Nación. (2014). Vigecimo Informe del Estado de la Nación. Retrieved from Estado de la Nación: http://www.estadonacion.or.cr/20/#inicio2

Feliu, S., Morcillo , M., & Feliu, S. (1993). The prediction of atmospheric corrosion from meteorological and pollution parameters, I Annual Corrosion. Corrosion Science 34 (3), 403-4014. doi:https://doi.org/10.1016/0010-938X(93)90112-T

Garita, L., Rodríguez Yáñez, J., & Robles, J. (2014). Modelado de la Velocidad de Corrosión de Acero de baja aleación en Costa Rica. Revista Ingenieria, (24), 2, 79-90. doi:https://doi.org/10.15517/RING.V24I2.14624

González, P., Mos, D., Santana, F., Vaswani, J., Santana Rodríguez, J., & González González, J. (2008). Modeling of the Atmospheric Corrosion of Copper in the Province of Las Palmas. Studies Using Classic and Electrochemical Techniques. Portugaliae Electrochimica Acta, (26): 125-145.25. doi:https://doi.org/10.4152/pea.200801125

Graedel, T. (1989). Corrosion Mechanisms for Zinc Exposed to the Atmosphere. Journal of the Electrochemical Society , 193 - 203.

Herrera Murillo, J., Rodríguez , S., Rojas Marin, J., & Baez, A. (2012). Relations Between Bulk Precipitation, PM10 Composition and Meteorological Conditions in the Metropolitan Area of Costa Rica. The Open Journal of Atmospheric Sciences, 6: 19-32. doi:http://dx.doi.org/10.2174/1874282301206010019

Herrera, J., Rojas, J., Beita, V., & Chaves, M. (2014). Composición química de muestras de depositación total colectadas en el área metropolitana de Costa Rica en 2012. Ciencias Ambientales, (48) 30 - 38. doi:https://doi.org/10.15359/rca.48-2.3

Herrera-Murillo, J., Soto-Murillo, T., Rojas-Marin, J., Beita-Guerrero, V., & Hidalgo-Gutierrez, M. (2020). Water-Soluble Anions in PM10 Samples Collected in the Metropolitan Area of Costa Rica: Temporal and Spatial Variations. Atmosphere, 12, 1264 . doi:https://doi.org/10.3390/atmos12101264

IMN. (2008). Segunda Comunicación sobre Clima, variabilidad y cambio climático en Costa Rica. San José, Costa Rica: MINAET, IMN, PNUD, CRRH.

IMN. (2021). Instituto Meteorológico Nacional de Costa Rica. Retrieved from Boletines meteorológicos: https://www.imn.ac.cr/en/boletin-meteorologico [Accesed 21th november 2021]

INEC. (2011). Anuario Estadístico 2010. San José, Costa Rica: Instituto Nacional de Estadística y Censos, Ministerio de Hacienda.

INTE C405-2021. (2021). Productos planos de Acero recubiertos con zinc (galvanizados) o recubiertos con aleación hierro zinc (galvano recocido) mediante procesos de inmersión en caliente. San José. Costa Rica: Instituto Costarricense de Normas Tecnicas.

ISO 8407:2013. (2013). Corrosion of Metals and Alloys - Removal of corrosion products from corrosion test specimens. Ginebra, Suiza: ISO.

ISO 9223:2012. (2012). Corrosion of Metals and Alloys - Corrosivity of Atmospheres - Classification. Ginebra, Suiza: ISO.

ISO 9225. (1992). 6. Corrosion of Metals and Alloys – Corrosivity of Atmospheres – Measurement of pollution. Ginebra, Suiza: ISO.

Leygraf, C., & Wallinder, I. (2016). The Atmospheric Corrosion Chemistry of Zinc - Appendix J. In J. Tidblad, & T. Graedel, Atmospheric Corrosion, Second Edition. (pp. 348 - 359). Hoboken, NJ. USA: John Wiley & Sons, Inc. Published.

Mariaca , L., Genesca, J., Uruchurtu, J., & Salvador , L. (1999). Corrosividad Atmosferica (MICAT - Mexico). Mexico, Mexico: Plaza y Valdez.

Mikhailov , A., Strekalov, P., & Panchenko, Y. (2007). Atmospheric Corrosion in Tropical and Subtropical Climate Zones: 3. Modeling Corrosion and Dose–Response Function for Structural Metals. Protection of Metals, 43(7):619–627. doi:https://doi.org/10.1134/S0033173207070028

Mikhailov , A., Tidblad, J., & Kucera, V. (2004). The Classification System of ISO 9223 Standard and the Dose–Response Functions Assessing the Corrosivity of Outdoor Atmospheres. Protection of Metals, (40):541-550. doi:doi.org/10.1023/B:PROM.0000049517.14101.68

Miller, J., & Miller, J. (2002). Estadística y Quimiometría para química analítica. Madrid, España: Pearson.

Morcillo , M., Chico, B., de la Fuente, D., & Simancas, J. (2012). Looking Back on Contributions in the Field of Atmospheric Corrosion Offered by the MICAT Ibero-American Testing Network. (Hindawi Publishing Corporation, Ed.) International Journal of Corrosion, Volume 2012, Article ID 824365, 1-24. doi:doi:10.1155/2012/824365

Morcillo, M. (2017). Fundamental and research frontier of atmospheric corrosion. Madrid, Spain: Materials. doi:https://doi.org/10.3390/books978-3-03842-642-4

Morcillo, M., Almeida, E., Fragata, F., & Panossian, Z. (2002). Corrosión y Protección de Metales en las Atmósferas de Iberoamérica, Parte II: Protección Anticorrosiva de MEtales en las Atmósferas de Iberoamérica (PATINA). Madrid, España: Programa CYTED, CSIC.

Morcillo, M., Almeida, E., Rosales, B., Uruchurtu, J., & Marrocos, M. (1998). Corrosion y Proteccion de Metales en las Atmosferas de Iberoamerica, Parte I: Mapas Iberoamericanos de Corrosion Atmosferica (MICAT). Madrid, España: Programa CYTED.

Muñóz, A. C., Fernández, W., Gutiérrez, J. A., & Zárate, E. (2002). Variación estacional del viento en Costa Rica y su relacion con los regímenes de lluvia. Tópicos meteorológicos y oceanográficos, 9 (1), 1 - 13.

NACE International Impact. (2016). International measures of prevention, application and economic of corrosion technology study . Houston, TX, USA: NACE International.

Natesan , M., Venkatachari, G., & Palaniswamy, N. (2006). Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India. Corrosion Science, 48, 3584–3608. doi:https://doi.org/10.1016/j.corsci.2006.02.006

Neurohr, E., Monge-Nagera, J., & González, M. (2011). Air pollution in tropical city. The relationship between wind direction and lichen bio indicators in San José, Costa Rica. Biologia Tropical, (59) 899 - 905. doi:https://www.doi.org/10.15517/RBT.V0I0.3148

Neurohr, E., Monge-Najera, J., & Mendez Estrada, V. (2013). Use of geographic informatioin system and lichens to map air pollution in tropical city, San José, Costa Rica. Biologia Tropical, 61 (2), 557- 563. doi:https://www.doi.org/10.15517/RBT.V61I2.11148

NOAA. (2021). Atlantic Hurricane Season. Retrieved from National Hurricane Center and Central Pacific Hurriacan Center: https://www.nhc.noaa.gov/data/tcr/index.php?season=2020&basin=atl

Odnewall Wallinder, I., & Leygraf, C. (2017). A Critical Review on Corrosion and Runoff from Zinc and Zinc-Based Alloys in Atmospheric Environments. Corrosion, 73 (9) 1060-1077. doi:https://www.doi.org/10.5006/2458

OVSICORI. (2021). Boletin semanal Vulcanologia. Retrieved from Observatorio Vulcanologico y Sismologico de Costa Rica: http://www.ovsicori.una.ac.cr/index.php/vulcanologia/informes-y-boletines/boletin-semanal-vigilancia-volcanica

Passam AG. (2016). Productos. Retrieved from Passam AG: http://www.passam.ch/products.htm

PRUGAM. (2009). Planificación Regional Urbana del Gran Área Metropolitana, Ministerio de Vivienda y Asentamientos Humanos, San José, Costa Rica. Retrieved from Ministerio de Vivienda y Asentamientos Humanos: http://www.mivah.go.cr/PRUGAM.shtml

Restrepo , A., Botero , C., & Correa, E. (2007). Corrosión del acero al carbono, acero galvanizado y aluminio en diferentes atmósferas colombianas. Scientia et Technica, (36):7-12. doi:https://doi.org/10.22517/23447214.4857

Ríos-Rojas, J., Aperador-Rodríguez , D., Hernández-García, E., & Arroyave, C. (2017). Annual atmospheric corrosion rate and dose-response function for carbon steel in Bogotá. Atmósfera, (30):53-61. doi:https://doi.org/10.20937/atm.2017.30.01.05

Roberge, P., Klassen, R., & Haberecht, P. (2002). Atmospheric corrosivity modeling-A review. Materials and Design, (23):321-330. doi:https://doi.org/10.1016/S0261-3069(01)00051-6

Robles, J. (2013). Evaluacion de la Corrosion Atmosferica en Tres Zonas Geograficas de Costa Rica por Medio de Tecnicas Electroquimicas y Gravimetricas. Heredia, Costa Rica: Tesis de Grado para Licenciatura en Quimica Industrial, Universidad Nacional.

Rodríguez Yáñez, J., Garita, L., & Saborío, E. (2015). Mapas estimativos de la corrosión atmosférica de acero de baja aleación en Costa Rica. Cuadernos de Investigación, UNED, Costa Rica., 7 (2): 181-191. doi:https://doi.org/10.22458/urj.v7i2.1144

Rodríguez-Yáñez, J., & Chaves Villalobos, M. (2019). Análisis de deposición total en la zona protectora de los cerros de Escazú en Costa Rica. Yulök, 3(1), 28-37. doi:https://doi.org/10.47633/yulk.v3i1

Rosales, B. (1997). Mapa de Corrosividad Atmosferica de Argentina. Buenos Aires, Argentina: CITEFA.

Santana, J., Santana, F., & González, F. (2003). The effect of environmental and meteorological variables on atmospheric corrosion of carbon steel, copper, zinc and aluminium in a limited geographic zone with different types of environment. Corrosion Science, 45(4):799-815. doi:https://doi.org/10.1016/S0010-938X(02)00081-1

Solano, J., & Villalobos, R. (2000). Regiones y Subregiones Climaticas de Costa Rica. San Jose, Costa Rica: Instituto Meteorologico Nacional.

Vera , R., Troconi de Rincón, O., Bagnara , M., Romero, N., Araya, R., & Ossandón, S. (2017). Tropical/non-tropical marine environments impact on the behaviour of carbon steel and galvanised steel. Materials Corrosion, (69):614-625. doi:https://doi.org/10.1002/maco.201709873

Wilks, D. (2011). Statistical Methods in the Atmospheric Sciences. New York, USA: Academic Press.

Yikun Cai, Yu Zhao, Xiaobing Ma, Kun Zhou, & Hao Wa. (2019). Application of hierarchical linear modelling to corrosion prediction in different atmospheric environments,. Corrosion Engeineering, Science and Technology, 54(3):266-275,. doi:https://doi.org/10.1080/1478422X.2019.1578067

Published
2022-07-04
How to Cite
Rodriguez-Yañez, J., Uruchurtu-Chavarin, J., & Sanabria-Chinchilla, J. (2022). Tropical atmospheric corrosion of galvanized steel, in a light urban atmosphere in the San José valley of Costa Rica. Revista Mexicana De Ingeniería Química, 21(2), Mat2759. https://doi.org/10.24275/rmiq/Mat2759
Section
Materials

Most read articles by the same author(s)