Cellulases production from Aspergillus niger-ITV-02 using corn lignocellulosic residues

  • Y.I. Pérez-Salazar
  • C. Peña-Montes
  • S. del Moral
  • M.G. Aguilar-Uscanga Tecnológico Nacional de México/Instituto tecnológico de Veracruz http://orcid.org/0000-0002-3875-7928
Keywords: Cellulase, A. niger, glucoamylase, enzyme activity, fungi.

Abstract

Cellulases are enzymes used in the hydrolysis of lignocellulosic residues for second-generation (2G) bioethanol production, the low availability in the market, and the high-cost impacts in the 40% of the total cost of 2G bioethanol production. Therefore, it is necessary to look for sustainable alternatives for its production. Cellulases are mainly produced by Aspergillus niger, and their activity can be affected by nitrogen concentration, the use of surfactants, and the carbon source, among others. The objective of this work was to identify enzymes with CMCase and β-glucosidase activity of A. niger ITV-02 from low-cost lignocellulosic residues such as corn and cob stubble in two culture media (M1 and M2). The results showed that using corn stover and medium M2 increased the volumetric activity 1.4 and 1.7 times, respectively compared to corn cob and medium M2. Likewise, enzymes with cellulase activity were identified using carboxymethyl cellulose (CMC) and 4- methyl-lumberyl-β-D-glucopyranoside (MUG). The enzymes identified in MUG correspond to a glucoamylase, two β-glucosidases, and an exo β-xylosidase. In CMC the following were identified: exo-β-1,3-glucanase, endo -β-1,4 xylanase arabinosidase, and endoglucanase.

References

Amore, A., Giacobbe, S., and Faraco, V. (2013). Regulation of Cellulase and Hemicellulase Gene Expression in Fungi. Current Genomics, 14(4), 230-249. https://doi.org/10.2174/1389202911314040002

Antonov, E., Wirth, S., Gerlach, T., Schlembach, I., Rosenbaum, M. A., Regestein, L., and Büchs, J. (2016). Efficient evaluation of cellulose digestibility by Trichoderma reesei Rut-C30 cultures in online monitored shake flasks. Microbial Cell Factories, 15(1), 164. https://doi.org/10.1186/s12934-016-0567-7

Barraza-González, E. A., Fernández-Lafuente, R., Zazueta-Alvarez, D. E., Rojas-Contreras, J. A., Miranda, J. L., Cruz, N. S., and Vázquez-Ortega, P. G. (2022). Immobilization of β-glucosidase from almonds on MANAE-agarose supports by using the chemistry of glutaraldehyde. Revista Mexicana De Ingeniería Química, 21(1), Bio2621-Bio2621.

Bohn, L. R., Dresch, A. P., Cavali, M., Vargas, A. C. G., Führ, J. F., Tironi, S. P., Fogolari, O., Mibielli, G. M., Jr, S. L. A., and Bender, J. P. (2021). Alkaline pretreatment and enzymatic hydrolysis of corn stover for bioethanol production. Research, Society and Development, 10(11), e149101118914-e149101118914. https://doi.org/10.33448/rsd-v10i11.18914

Cerda-Mejía, L. (2016). Enzimas modificadoras de la pared celular vegetal. Celulasas de interés biotecnológico papelero [Ph.D. Thesis, Universitat de Barcelona]. En TDX (Tesis Doctorals en Xarxa). http://www.tdx.cat/handle/10803/398119

Chen, Y., Stevens, M. A., Zhu, Y., Holmes, J., and Xu, H. (2013). Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnology for Biofuels, 6(1), 8. https://doi.org/10.1186/1754-6834-6-8

Chuck-Hernández, C., Pérez-Carrillo, E., Heredia-Olea, E., and Serna-Saldívar, S. O. (2011). Sorgo como un cultivo multifacético para la producción de bioetanol en méxico: tecnologías, avances y áreas de oportunidad. Revista Mexicana de Ingeniería Química, 10(3), 529-549.

Fowler, T., Berka, R. M., and Ward, M. (1990). Regulation of the glaA gene of Aspergillus niger. Current Genetics, 18(6), 537-545. https://doi.org/10.1007/BF00327025

Ganzlin, M., and Rinas, U. (2008). In-depth analysis of the Aspergillus niger glucoamylase (glaA) promoter performance using high-throughput screening and controlled bioreactor cultivation techniques. Journal of Biotechnology, 135(3), 266-271. https://doi.org/10.1016/j.jbiotec.2008.04.005

García-Reyes, M., Beltrán-Hernández, R. I., Vázquez-Rodríguez, G. A., Coronel-Olivares, C., Medina-Moreno, S. A., Juárez-Santillán, L. F., and Lucho-Constantino, C. A. (2017). Formation, Morphology and Biotechnological Applications of Filamentous Fungal Pellets: A Review. Revista Mexicana de Ingeniería Química, 16(3), 703-720.

Gilead, S., and Shoham, Y. (1995). Purification and characterization of alpha-L-arabinofuranosidase from Bacillus stearothermophilus T-6. Applied and Environmental Microbiology, 61(1), 170-174.

Gong, G., Zheng, Z., Liu, H., Wang, L., Diao, J., and Zhao, P. W. and G. (2014). Purification and Characterization of a β-Glucosidase from Aspergillus niger and Its Application in the Hydrolysis of Geniposide to Genipin. 24(6), 788-794. https://doi.org/10.4014/jmb.1401.01053

Guo, Y., Yan, Q., Yang, Y., Yang, S., Liu, Y., and Jiang, Z. (2015). Expression and characterization of a novel β-glucosidase, with transglycosylation and exo-β-1,3-glucanase activities, from Rhizomucor miehei. Food Chemistry, 175, 431-438. https://doi.org/10.1016/j.foodchem.2014.12.004

Gutiérrez-Rojas, I., Moreno-Sarmiento, N., and Montoya, D. (2015). Mecanismos y regulación de la hidrólisis enzimática de celulosa en hongos filamentosos: Casos clásicos y nuevos modelos. Revista Iberoamericana de Micología, 32(1), 1-12. https://doi.org/10.1016/j.riam.2013.10.009

Hernández, C., Escamilla‐Alvarado, C., Sánchez, A., Alarcón, E., Ziarelli, F., Musule, R., and Valdez‐Vazquez, I. (2019). Wheat straw, corn stover, sugarcane, and Agave biomasses: Chemical properties, availability, and cellulosic‐bioethanol production potential in Mexico. Biofuels, Bioproducts and Biorefining, 13(5), 1143-1159. https://doi.org/10.1002/bbb.2017

Hernández-Guzmán, A., Flores-Martínez, A., Ponce-Noyola, P., and Villagómez-Castro, J. C. (2016). Purification and characterization of an extracellular β-glucosidase from Sporothrix schenckii. FEBS Open Bio, 6(11), 1067-1077. https://doi.org/10.1002/2211-5463.12108

Horton, H. R., Moran, L. A., Scrimgeour, K. G., Perry, M. D., and Raw, J. D. (2008). Metabolismo de los aminoácidos in Principios de bioquímica (cuarta).pp 520-556. Pearson education. México. https://www.academia.edu/44311846/Bioquimica_Horton_Ed_4

Infanzón-Rodríguez, M. I., Ragazzo-Sánchez, J. A., del Moral, S., Calderón-Santoyo, M., Gutiérrez-Rivera, B., and Aguilar-Uscanga, M. G. (2020). Optimization of Cellulase Production by Aspergillus niger ITV 02 from Sweet Sorghum Bagasse in Submerged Culture Using a Box–Behnken Design. Sugar Tech, 22(2), 266-273. https://doi.org/10.1007/s12355-019-00765-2

Islam, F., and Roy, N. (2018). Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Research Notes, 11(1), 445. https://doi.org/10.1186/s13104-018-3558-4

Jayasekara, S., and Ratnayake, R. (2019). Microbial Cellulases: An Overview and Applications. En A. Rodríguez Pascual & M. E. Eugenio Martín (Eds.), Cellulose. IntechOpen. https://doi.org/10.5772/intechopen.84531

Kamaruddin, S., Rabu, A., Diba, F., Bakar, A., Illias, R. M., Said, M., Hassan, O., Murad, A., and Munir, A. (2008). Cloning of Aspergillus Niger BglA and expression of recombinant β-glucosidase in methylotrophic yeast Pichia Pastoris. Jurnal Teknologi, 49, 367-381.

Kuhad, R. C., Gupta, R., and Singh, A. (2011). Microbial Cellulases and Their Industrial Applications. Enzyme Research, 2011, 1-10. https://doi.org/10.4061/2011/280696

Lee, J.-W., Park, J.-Y., Kwon, M., and Choi, I.-G. (2009). Purification and characterization of a thermostable xylanase from the brown-rot fungus Laetiporus sulphureus. Journal of Bioscience and Bioengineering, 107(1), 33-37. https://doi.org/10.1016/j.jbiosc.2008.09.006

Lima, M. A., Oliveira-Neto, M., Kadowaki, M. A. S., Rosseto, F. R., Prates, E. T., Squina, F. M., Leme, A. F. P., Skaf, M. S., and Polikarpov, I. (2013). Aspergillus niger β-Glucosidase Has a Cellulase-like Tadpole Molecular Shape: insights into glycoside hydrolase family 3 (gh3) β-glucosidase structure and function. Journal of Biological Chemistry, 288(46), 32991-33005. https://doi.org/10.1074/jbc.M113.479279

Liu, G., Zhang, J., and Bao, J. (2016). Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling. Bioprocess and Biosystems Engineering, 39(1), 133-140. https://doi.org/10.1007/s00449-015-1497-1

Liu, Y.-S., and Wu, J.-Y. (2012). Effects of Tween 80 and pH on mycelial pellets and exopolysaccharide production in liquid culture of a medicinal fungus. Journal of Industrial Microbiology and Biotechnology, 39(4), 623-628. https://doi.org/10.1007/s10295-011-1066-9

Lu, X., Zheng, X., Li, X., and Zhao, J. (2016). Adsorption and mechanism of cellulase enzymes onto lignin isolated from corn stover pretreated with liquid hot water. Biotechnology for Biofuels, 9(1), 118. https://doi.org/10.1186/s13068-016-0531-0

Mafa, Mpho. S., Malgas, S., Bhattacharya, A., Rashamuse, K., and Pletschke, B. I. (2020). The Effects of Alkaline Pretreatment on Agricultural Biomasses (Corn Cob and Sweet Sorghum Bagasse) and Their Hydrolysis by a Termite-Derived Enzyme Cocktail. Agronomy, 10(8), 1211. https://doi.org/10.3390/agronomy10081211

Michelin, M., Ruiz, H. A., Silva, D. P., Ruzene, D. S., Teixeira, J. A., and Polizeli, M. L. T. M. (2014). Cellulose from Lignocellulosic Waste. En K. G. Ramawat & J.-M. Mérillon (Eds.), Polysaccharides (pp. 1-33). Springer International Publishing. https://doi.org/10.1007/978-3-319-03751-6_52-1

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426-428. https://doi.org/10.1021/ac60147a030

Miranda-Sosa, A., del Moral-Ventura, S. T., Aguilar-Uscanga, M. G., and Domínguez-Gonzáles, J. M. (2019). Producción de celulasas de Aspergillus niger ITV-02 utilizando diferentes residuos lignocelulósicos. [Presentación de papel]. June 23-28. León Guanajuato México. Congreso Nacional de Biotecnología y Bioíngenieria

Mohanty, B., and Abdullahi, I. (2016). Bioethanol Production from Lignocellulosic Waste-A Review. Biosciences, Biotechnology Research Asia, 13, 1153-1161. https://doi.org/10.13005/bbra/2146

Montoya Espinoza, W. J., Nolasco Cárdenas, O. P., Acuña Payano, R. K., and Gutiérrez, A. I. F. (2016). Expresión de β-1,3-Glucanasas de Beauveria bassiana en cultivo con extracto de los fitopatógenos Peronospora variabilis y Fusarium oxysporum. Scientia Agropecuaria, 7(SPE), 253-257. https://doi.org/10.17268/sci.agropecu.2016.03.13

Muhammad ishfaq Ghori. (2011). Corn stover-enhanced cellulase production by Aspergillus niger NRRL 567. African Journal Of Biotechnology, 10(31). https://doi.org/10.5897/AJB10.2342

Nitta, M., Furukawa, T., Shida, Y., Mori, K., Kuhara, S., Morikawa, Y., and Ogasawara, W. (2012). A new Zn(II)2Cys6-type transcription factor BglR regulates β-glucosidase expression in Trichoderma reesei. Fungal Genetics and Biology, 49(5), 388-397. https://doi.org/10.1016/j.fgb.2012.02.009

Nobeli, I., Favia, A. D., and Thornton, J. M. (2009). Protein promiscuity and its implications for biotechnology. Nature Biotechnology, 27(2), 157-167. https://doi.org/10.1038/nbt1519

NREL. (s. f.). Recuperado 3 de mayo de 2020, de https://www.nrel.gov/docs/fy10osti/47572.pdf

Olkiewicz, M., Tylkowski, B., Montornés, J. M., Garcia-Valls, R., and Gulaczyk, I. (2020). Modelling of enzyme kinetics: Cellulose enzymatic hydrolysis case. Physical Sciences Reviews, 0(0), 20200039. https://doi.org/10.1515/psr-2020-0039

Pandey, A., Negi, S., & Soccol, C. R. (Eds.). (2016). α-amylases.Current developments in biotechnology and bioengineering: production, isolation and purification of industrial products. Pp 1-24. Elsevier. United States.

Paz, A., da Silva Sabo, S., Vallejo, M., Marguet, E., Pinheiro de Souza Oliveira, R., and Domínguez, J. M. (2018). Using brewer’s spent grain to formulate culture media for the production of bacteriocins using Patagonian strains. LWT, Food Science and Technology, 27. https://doi.org/10.1016/j.lwt.2018.05.027

Peña-Maravilla, M., Calixto-Romo, M. A., Guillén-Navarro, K., Sánchez, J. E., and Amaya-Delgado, L. (2017). Cellulases and xylanases production by Penicillium citrinum cgetcr using coffee pulp in solid state fermentation. Revista Mexicana de Ingeniería Química, 16(3), 757-769.

Ravindran, R., and Jaiswal, A. (2016). Microbial Enzyme Production Using Lignocellulosic Food Industry Wastes as Feedstock: A Review. Bioengineering, 3(4), 30. https://doi.org/10.3390/bioengineering3040030

Ricardo, F. A., Frederick, M. M., Frederick, J. R., and Reilly, P. J. (1985). Purification and characterization of endo-xylanases from Aspergillus niger. III. An enzyme of pl 3.65. Biotechnology and Bioengineering, 27(4), 539-546. https://doi.org/10.1002/bit.260270422

Rofiqah, U., Safitri, A., and Fadhilah. (2019). Study of delignification process and crystallinity index on lignocellulose components of corn cob in different pretreatments: A combination of pretreatment (ionic choline acetate and NaOH) and NaOH pretreatment. IOP Conference Series: Materials Science and Engineering, 625(1), 012029. https://doi.org/10.1088/1757-899X/625/1/012029

Saini, J. K., Saini, R., and Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech, 5(4), 337-353. https://doi.org/10.1007/s13205-014-0246-5

Salgado, J. C. S., Meleiro, L. P., Carli, S., and Ward, R. J. (2018). Glucose tolerant and glucose stimulated β-glucosidases – A review. Bioresource Technology, 267, 704-713. https://doi.org/10.1016/j.biortech.2018.07.137

Sánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185-194. https://doi.org/10.1016/j.biotechadv.2008.11.001

Santerre-Henriksen, A., Even, S., Müller, C., Punt, P., Hondel, C., and Nielsen, J. (1999). Study of the glucoamylase promoter in Aspergillus niger using green fluorescent protein. Microbiology (Reading, England), 145 ( Pt 3), 729-734. https://doi.org/10.1099/13500872-145-3-729

Schwentke, J., Sabel, A., Petri, A., König, H., and Claus, H. (2014). The yeast Wickerhamomyces anomalus AS1 secretes a multifunctional exo- β -1,3-glucanase with implications for winemaking: A multifunctional exo- β -1,3-glucanase from Wickerhamomyces anomalus. Yeast, 31(9), 349-359. https://doi.org/10.1002/yea.3029

Sigma Aldrich. (s. f.). Recuperado 12 de junio de 2020, de https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Bulletin/b6916bul.pdf

Singhania, R. R., Sukumaran, R. K., Rajasree, K. P., Mathew, A., Gottumukkala, L., and Pandey, A. (2011). Properties of a major β-glucosidase-BGL1 from Aspergillus niger NII-08121 expressed differentially in response to carbon sources. Process Biochemistry, 46(7), 1521-1524.

Sun, Y., and Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83(1), 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7

Suzuki, K., Yabe, T., Maruyama, Y., Abe, K., and Nakajima, T. (2001). Characterization of Recombinant Yeast Exo-β-1,3-Glucanase (Exg 1p) Expressed in Escherichia coli Cells. Bioscience, Biotechnology, and Biochemistry, 65(6), 1310-1314. https://doi.org/10.1271/bbb.65.1310

Tian, L., Liu, S., Wang, S., and Wang, L. (2016). Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis. Scientific Reports, 6(1), 23605. https://doi.org/10.1038/srep23605

Uchino, F., and Nakane, T. (1981). A Thermostable Xylanase from a Thermophilic Acidophilic Bacillus sp. Agricultural and Biological Chemistry, 45(5), 1121-1127. https://doi.org/10.1080/00021369.1981.10864666

Vargas-Solano, Z., Martínez-Trujillo, M. A., and Membrillo-Venegas, I. (2021). Conditioning and use of prickly pear peels for the production of lignocellulosic enzymes by Aspergillus niger sp. On solid-state cultures. Revista Mexicana de Ingeniería Química, 20(3), IA2446-IA2446. https://doi.org/10.24275/rmiq/IA2446

Yan, S., Liang, Y., Zhang, J., and Liu, C.-M. (2012). Aspergillus flavus grown in peptone as the carbon source exhibits spore density- and peptone concentration-dependent aflatoxin biosynthesis. BMC Microbiology, 12(1), 106. https://doi.org/10.1186/1471-2180-12-106

Yuan, X.-L., van der Kaaij, R. M., van den Hondel, C. A. M. J. J., Punt, P. J., van der Maarel, M. J. E. C., Dijkhuizen, L., and Ram, A. F. J. (2008). Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles. Molecular Genetics and Genomics, 279(6), 545-561. https://doi.org/10.1007/s00438-008-0332-7

Zhao, L., Zhou, T., Li, X., Fan, S., and You, L. (2013). Expression and characterization of GH3 β-Glucosidase from Aspergillus niger NL-1 with high specific activity, glucose inhibition and solvent tolerance. Microbiology, 82(3), 356-363. https://doi.org/10.1134/S0026261713030181

Zou, G., Bao, D., Wang, Y., Zhou, S., Xiao, M., Yang, Z., Wang, Y., and Zhou, Z. (2021). Alleviating product inhibition of Trichoderma reesei cellulase complex with a product-activated mushroom endoglucanase. Bioresource Technology, 319, 124119. https://doi.org/10.1016/j.biortech.2020.124119

Published
2022-07-07
How to Cite
Pérez-Salazar, Y., Peña-Montes, C., del Moral, S., & Aguilar-Uscanga, M. (2022). Cellulases production from Aspergillus niger-ITV-02 using corn lignocellulosic residues. Revista Mexicana De Ingeniería Química, 21(2), Alim2772. https://doi.org/10.24275/rmiq/Alim2772
Section
Food Engineering