Cellulose acetate membrane filtration effect on particle size distribution of golden delicious apple juice: Experimental validation of a simulation model

Keywords: Apple juice, membrane filtration, particle size distribution, pore size distribution, computational model.

Abstract

Juice clarification through membranes is becoming an important technology due to its capacity to keep high quality and sensorial characteristics. In the clarification process, the particle size of the feed and the pore size of the membrane give important information about the characteristics and stabilization of the filtered juice. In this work we present an application of a previously reported novel computational simulation used to describe two apple juice filtration systems. Experimental data on the filtration of Golden Delicious (GD) apple juice after two different pre-filtration treatments was obtained and the effect on particle size distribution was studied. The experimental data was compared to the simulation results in which the final mean particle size of filtered juices is determined by the pore size distribution of the membrane and the feed particle size distribution. The error of the simulated values was <10% and therefore the model is valid as a first attempt to provide criteria for membrane selection in the filtration of apple juice and could be scaled to other filtration systems.

References

Benítez, E. I., Genovese, D. B., & Lozano, J. E. (2009). Effect of typical sugars on the viscosity and colloidal stability of apple juice. Food Hydrocolloids 23(2), 519-525. https://doi.org/10.1016/j.foodhyd.2008.03.005

Benítez, E. I., Lozano, J. E., & Genovese, D. B. (2010). Fractal Dimension and Mechanism of Aggregation of Apple Juice Particles. Revista de Agroquímica y Tecnología de Alimentos 16(2), 179-186. https://doi.org/10.1177/1082013209353240

Beristain, C. I., Cruz-Sosa, F., Lobato-Calleros, C., Pedroza-Islas, R., Rodríguez-Huezo, M. E., & Verde-Calvo, J. R. (2020). Applications of soluble dietary fibers in Beverages. Revista Mexicana De Ingeniería Química 5(1), 81-95. http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1874

Beveridge, T., Harrison, J. H., & Dalgleish, D. G. (1998). Particle development in apple juice determined by light scattering and electron microscopy. Scanning 20(1), 50-56. https://doi.org/10.1002/sca.1998.4950200108

Beveridge, T. (2002). Opalescent and Cloudy Fruit Juices: Formation and Particle Stability, Critical Reviews in Food Science and Nutrition 42(4), 317-337. https://doi.org/10.1080/10408690290825556

Carbonell, J. V., Tárrega, A., Gurrea, M. C., & Sentandreu, E. (2011). Chilled orange juices stabilized by centrifugation and differential heat treatments applied to low pulp and pulpy fractions. Innovative Food Science & Emerging Technologies 12(3), 315-319. https://doi.org/10.1016/j.ifset.2011.04.009

Chatterjee, G., De Neve, J., Dutta, A., & Das, S. (2020). Formulation and statistical evaluation of a ready-to-drink whey based orange beverage and its storage stability. Revista Mexicana De Ingeniería Química, 14(2), 253-264. http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1192

Conidi, C., Castro-Muñoz, R., & Cassano, A. (2020). Membrane-Based Operations in the Fruit Juice Processing Industry: A Review. Beverages 6(1), 18. https://doi.org/10.3390/beverages6010018

Dahdouh, L., Delalonde, M., Ricci, J., Servent, A., Dornier, M., & Wisniewski, C. (2016). Size-cartography of orange juices foulant particles: Contribution to a better control of fouling during microfiltration. Journal of Membrane Science 509, 164-172. https://doi.org/10.1016/j.memsci.2016.01.052

Dahdouh L., Wisniewski C., Ricci J., Vachoud L., Dornier M., Delalonde M. (2016). Rheological study of orange juices for a better knowledge of their suspended solids interactions at low and high concentration. Journal of Food Engineering 174, 15-20. https://doi.org/10.1016/j.jfoodeng.2015.11.008

de Bruijn, J., Venegas, A., & Borquez, R. (2002). Influence of crossflow ultrafiltration on membrane fouling and apple juice quality. Desalination 148(1), 131-136. https://doi.org/10.1016/S0011-9164(02)00666-5

Domingues, R. C. C., Ramos, A. A., Cardoso, V. L., & Reis, M. H. M. (2014). Microfiltration of passion fruit juice using hollow fibre membranes and evaluation of fouling mechanisms. Journal of Food Engineering 121, 73-79. https://doi.org/10.1016/j.jfoodeng.2013.07.037

Eisele, T. A., & Drake, S. R. (2005). The partial compositional characteristics of apple juice from 175 apple varieties. Journal of Food Composition and Analysis 18(2), 213-221. https://doi.org/10.1016/j.jfca.2004.01.002

Fitri, S. J., & Widiastuti, N. (2017). Preparation of polyvinylidene fluoride/cellulose acetate blend membrane with polyethylene glycol additive for apple juice clarification. AIP Conference Proceedings 1823(1), 020091. https://doi.org/10.1063/1.4978164

Genovese, D. B., Elustondo, M. P., & Lozano, J. E. (1997). Color and Cloud Stabilization in Cloudy Apple Juice by Steam Heating During Crushing. Journal of Food Science 62(6), 1171-1175. https://doi.org/10.1111/j.1365-2621.1997.tb12238.x

Genovese, D. B., & Lozano, J. E. (2000). Particle size determination of food suspensions: Application to cloudy apple juice. Journal of Food Process Engineering, 23(6), 437-452. https://doi.org/10.1111/j.1745-4530.2000.tb00525.x

Genovese, D. B., & Lozano, J. E. (2006). Contribution of colloidal forces to the viscosity and stability of cloudy apple juice. Food Hydrocolloids 20(6), 767-773. http://dx.doi.org/10.1016/j.foodhyd.2005.07.003

Gulec, H. A., Bagci, P. O., & Bagci, U. (2017). Clarification of Apple Juice Using Polymeric Ultrafiltration Membranes: a Comparative Evaluation of Membrane Fouling and Juice Quality. Food and Bioprocess Technology 10(5), 875-885. https://doi.org/10.1007/s11947-017-1871-x

Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2020). Computational modelling approach for the optimization of apple juice clarification using immobilized pectinase and xylanase enzymes. Current Research in Food Science 3, 243–255. https://doi.org/10.1016/j.crfs.2020.09.003

Hoek, E. M. V., Bhattacharjee, S., & Elimelech, M. (2003). Effect of Membrane Surface Roughness on Colloid−Membrane DLVO Interactions. Langmuir 19(11), 4836-4847. https://doi.org/10.1021/la027083c

IMARCgroup (2022). Fruit Juice Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2022-2027. Available at: https://www.imarcgroup.com/fruit-juice-manufacturing-plant. Accessed: June 23, 2022.

Israelachvili, J. N. (2009). Intermolecular and surface forces. Academic Press, San Diego.

Kellenberger, C. R., Pfleiderer, F. C., Raso, R. A., Burri, C. H., Schumacher, C. M., Grass, R. N., et al. (2014). Limestone nanoparticles as nanopore templates in polymer membranes: narrow pore size distribution and use as self-wetting dialysis membranes. [10.1039/C4RA12613K]. RSC Advances 4(106), 61420-61426. https://doi.org/10.1039/C4RA12613K

Marrufo-Hernández, N. A., Palma-Orozco, G., Beltrán, H. I., & Nájera, H. (2017). Purification, partial biochemical characterization and inactivation of polyphenol oxidase from Mexican Golden Delicious apple (Malus domestica). Journal of Food Biochemistry 41(3), e12356-n/a. https://doi.org/10.1111/jfbc.12356

Marrufo-Hernández, N. A., Hernández-Guerrero, M., Nápoles-Duarte, J. M., Palomares-Báez, J. P., & Chávez-Rojo, M. A. (2018). Prediction of the filtrate particle size distribution from the pore size distribution in membrane filtration: Numerical correlations from computer simulations. AIP Advances 8(3), 035308. https://doi.org/10.1063/1.5009568

Mirsaeedghazi, H., Emam-Djomeh, Z., Mousavi, S. M., Aroujalian, A., & Navidbakhsh, M. (2010). Clarification of pomegranate juice by microfiltration with PVDF membranes. Desalination 264(3), 243-248. https://doi.org/10.1016/j.desal.2010.03.031

Munson-McGee, S. H. (2002). Effect of particle-size and pore-size distributions in cross-flow filtration. Separation Science and Technology 37(3), 493-513. https://doi.org/10.1081/SS-120001444

Nawaz, A., Sameer, M., Akram, F., Tahir, S., Arshad, Y., Haq, I., & Mukhtar, H. (2021). Kinetic and thermodynamic insight of a polygalacturonase: A biocatalyst for industrial fruit juice clarification. Revista Mexicana De Ingeniería Química 20(2), 1029-1045. https://doi.org/10.24275/rmiq/Bio2355

NOM (2009). NOM-173-SCFI-2009. Available at: https://www.dof.gob.mx/nota_detalle_popup.php?codigo=5107330. Accessed: June 23, 2022.

Onsekizoglu, P., Bahceci, K. S., & Acar, M. J. (2010). Clarification and the concentration of apple juice using membrane processes: A comparative quality assessment. Journal of Membrane Science 352(1), 160-165, https://doi.org/10.1016/j.memsci.2010.02.004

Peng Wu, & Masanao Imai (2012). Novel Biopolymer Composite Membrane Involved with Selective Mass Transfer and Excellent Water Permeability. In Advancing Desalination (R. Y. Ning, ed.), Pp. Ch. 03. Rijeka: InTech.

Qiu, C. G., & Rao, M. A. (1988). Role of Pulp Content and Particle Size in Yield Stress of Apple Sauce. Journal of Food Science 53(4), 1165-1170. https://doi.org/10.1111/j.1365-2621.1988.tb13554.x

Rao, M. A., Cooley, H. J., Nogueira, J. N., & McLellan, M. R. (1986). Rheology of Apple Sauce: Effect of Apple Cultivar, Firmness, and Processing Parameters. Journal of Food Science, 51(1), 176-179. https://doi.org/10.1111/j.1365-2621.1986.tb10864.x

SAGARPA (2021). Estima Agricultura crecimiento de dos dígitos en producción nacional de manzanas al cierre del ciclo agrícola 2021. Available at: https://www.gob.mx/agricultura/prensa/estima-agricultura-crecimiento-de-dos-digitos-en-produccion-nacional-de-manzanas-al-cierre-del-ciclo-agricola-2021. Accessed: June 28, 2022.

Sánchez-Vargas, J., & Valdés-Parada, F. (2021). Multiscale modeling of a membrane bioreactor for the treatment of oil and grease rendering wastewaters. Revista Mexicana De Ingeniería Química 20(2), 911-940. https://doi.org/10.24275/rmiq/Fen2368

Santacruz-Vázquez, V., Santacruz-Vázquez, C., & Laguna-Cortés, J. (2020). Design of a minimally processed juice added with micro and nanocapsules of folic acid and its use as vehicle for ingestion in wistar rats. Revista Mexicana De Ingeniería Química, 12(2), 177-191. http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1448

Stinco, C. M., Fernández-Vázquez, R., Escudero-Gilete, M. L., Heredia, F. J., Meléndez-Martínez, A. J., & Vicario, I. M. (2012). Effect of Orange Juice’s Processing on the Color, Particle Size, and Bioaccessibility of Carotenoids. Journal of Agricultural and Food Chemistry 60(6), 1447-1455. https://doi.org/10.1021/jf2043949

Vrijenhoek, E. M., Hong, S., & Elimelech, M. (2001). Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. Journal of Membrane Science 188(1), 115-128. https://doi.org/10.1016/S0376-7388(01)00376-3

Zhao, C., Zhou, X., & Yue, Y. (2000). Determination of pore size and pore size distribution on the surface of hollow-fiber filtration membranes: a review of methods. Desalination 129(2), 107-123. https://doi.org/10.1016/S0011-9164(00)00054-0

Published
2022-07-08
How to Cite
Marrufo-Hernández, N., Chávez-Rojo, M., & Hernandez-Guerrero, M. (2022). Cellulose acetate membrane filtration effect on particle size distribution of golden delicious apple juice: Experimental validation of a simulation model. Revista Mexicana De Ingeniería Química, 21(2), Alim2773. https://doi.org/10.24275/rmiq/Alim2773
Section
Food Engineering