Chitosan and GRAS substances application in the control of Geotrichum candidum isolated from tomato fruits (Lycopersicum esculentum L.) in the state of Nayarit, Mexico: In vitro tests

  • C.A. Rodríguez-Guzmán
  • B. Montaño-Leyva
  • J.A. Sánchez-Burgos
  • P.U. Bautista-Rosales
  • P. Gutierrez-Martinez Tecnológico Nacional de México/I.T.Tepic
Keywords: Lycopersicum esculentum L, antimicrobial activity, chitosan, GRAS substances, Geotrichum candidum.

Abstract

Geotrichum candidum causal agent of tomato sour rot, has the potential to infect a wide variety of fruits and vegetables. In this work, the in vitro antifungal activity of Chitosan (Chi), Potassium Sorbate (PS), Sodium Bicarbonate (SB), and Sodium Carbonate (SC) and their mixtures were evaluated. The PS and SC treatments showed a 100% inhibition of mycelial growth (MG), germination, and sporulation. Regarding SB, 1.5 and 2.0% concentrations inhibited 87.5 and 88.5% of MG and affected germination and sporulation. Chi at 1.0, 1.5, and 2.0% inhibited MG by 63.1, 62.4, and 42.1%, respectively, affecting germination and sporulation. The combination of chitosan at 0.5% + PS 0.5% and Chi 0.5% + SC 0.5% demonstrated 99.3 and 71.4%, inhibition of MG, and affected germination and sporulation. Chi 0.5% + SB 1.5% showed no effect on MG, and at 0.5 and 1.0%, the growth rate of the mycelium increased, as well as sporulation and germination. In conclusion, chitosan and salts are an option for the use of synthetic fungicides in the control of pathogenic fungi in postharvest, with low toxicity, and are friendly to the environment.

References

Abbas, M., Ghazanfar, M. U., Raza, W., Iqbal, Z., and Ahmad, S. (2019). Inorganic salts and salicylic acid for the control of Rhizopus stolonifer on plum. International Journal of Biosciences, 14(4), 103-111. http://dx.doi.org/10.12692/ijb/14.4.103-111

Alaoui, F.T., Askarne, L., Boubaker, H., Boudyach, E. and Aoumar AAB. (2017). Control of gray mold disease of tomato by postharvest application of organic acids and salts. Plant Pathology Journal (Faisalabad), 16 (2): 62-72. https://doi.org/10.3923/ppj.2017.62.72

Bautista-Baños, S., Necha, L. L. B., Hernández-López, M., and Rodríguez-González, F. (2016). Morphological and ultrastructural modifications of chitosan-treated fungal phytopathogens. In Chitosan in the preservation of agricultural commodities (251-275). Academic Press. https://doi.org/10.1016/B978-0-12-802735-6.00009-4

Bautista-Baños, S., Ramos-García, M. D. L., Hernández-López, M., Córdova-Albores, L., López-Mora, L. I., Gutiérrez-Martínez, P. and Sánchez-Domínguez, D. (2012). Use of scanning and transmission electron microscopy to identify morphological and cellular damage on phytopathogenic fungi due to natural products application. Current microscopy contributions to advances in science and technology, Edition 1, 401-405. Formatex Research Center. https://books.google.com.mx/books?id=kMNjmwEACAAJ

Berumen-Varela, G., Coronado-Partida, L., Ochoa-Jiménez, V., Chacón-López, M. and Gutiérrez Martínez, P. (2015). Effect of chitosan on the induction of disease resistance against Colletotrichum sp. in mango (Mangifera indica L.) cv Tommy Atkins. Investigación y Ciencia, 66, 16–21. https://doi.org/10.33064/iycuaa2015663565

Bhalerao, J. B., Chavan, R. A., Dharbale, B. B., Swami, C. S., Kardile, P. B. and Kendre, A. H. (2019). Studies on in-vitro efficacy of chemicals against major fungi associated with post-harvest rot of tomato. Journal of Pharmacognosy and Phytochemistry, 8(2), 1159-1163. https://www.phytojournal.com/archives?year=2019&vol=8&issue=2&ArticleId=7783

Bourret, T. B., Kramer, E. K., Rogers, J. D. and Glawe, D. A. (2013). Isolation of Geotrichum candidum pathogenic to tomato (Solanum lycopersicum) in Washington State. North American Fungi, 8(0), 1. https://doi.org/10.2509/naf2013.008.014

Castro Marín, A., Colangelo, D., Lambri, M., Riponi, C., and Chinnici, F. (2021). Relevance and perspectives of the use of chitosan in winemaking: A review. Critical Reviews in Food Science and Nutrition, 61(20), 3450-3464. https://doi.org/10.1080/10408398.2020.1798871

Chantarasiri, A., Boontanom, P., Siriprom, W. and Kongsriprapan, S. (2021). First report of Geotrichum candidum causing sour rot of longkong fruits (Lansium domesticum) in Southern Thailand. New Disease Reports, 43(2). https://doi.org/10.1002/ndr2.12016

Chávez-Magdaleno, M. E., Luque-Alcaraz, A. G., Gutiérrez-Martínez, P., Cortez-Rocha, M. O., Burgos-Hernández, A., Lizardi-Mendoza, J., and Plascencia-Jatomea, M. (2018). Effect of chitosan-pepper tree (Schinus molle) essential oil biocomposites on the growth kinetics, viability and membrane integrity of Colletotrichum gloeosporioides. Revista Mexicana de Ingeniería Química, 17(1), 29-45. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Chavez

Coma, V., Martial‐Gros, A., Garreau, S., Copinet, A., Salin, F., and Deschamps, A. (2002). Edible antimicrobial films based on chitosan matrix. Journal of food science, 67(3), 1162-1169. https://doi.org/10.1111/j.1365-2621.2002.tb09470.x

Coronado-Partida, L. D., Serrano, M., Romanazzi, G., González-Estrada, R. R., and Gutiérrez-Martínez, P. (2021). Application of GRAS compounds to control soft rot in jackfruit (Artocarpus heterophyllus L.) caused by Rhizopus stolonifer. TIP. Revista Especializada en Ciencias Químico-Biológicas, 24 (1). https://doi.org/10.22201/fesz.23958723e.2021.327

de Hoog, G. S. and Smith, M. T. (2004). Ribosomal gene phylogeny and species delimitation in. Studies in Mycology, 50(50), 489–515. https://studiesinmycology.org/index.php/issue/52-studies-in-mycology-no-50

De Oliveira, K. Á. R., Berger, L. R. R., de Araújo, S. A., Câmara, M. P. S. and de Souza, E. L. (2017). Synergistic mixtures of chitosan and Mentha piperita L. essential oil to inhibit Colletotrichum species and anthracnose development in mango cultivar Tommy Atkins. Food Microbiology, 66: 96–103. http://doi.org/10.1016/j.fm.2017.04.012

Duellman, K. M., Lent, M. A., Brown, L., Harrington, M., Harrington, S. and Woodhall, J. W. (2021). First report of rubbery rot of potato caused by Geotrichum candidum in the United States. Plant Disease, 105(4), 1206. https://doi.org/10.1094/PDIS-08-20-1815-PDN

El-Ghaouth, A., Arul, J., Ponnampalam, R. and Boulet, M. (1991). Chitosan coating effect on storability and quality of fresh strawberries. Journal of Food Science, 56: 1618–31. https://doi.org/10.1111/j.1365-2621.1991.tb08655.x

Gálvez-Marroquín, L. A., Martínez-Bolaños, M., Cruz-Chávez, Marco A., Ariza-Flores, R., Cruz-López, J. A., Magaña-Lira, N., Cruz de la Cruz, Leidy L., and Ariza-Hernández, F. J. (2022). Inhibition of mycelial growth and conidium germination of Colletotrichum sp. for organic and inorganic products. Agroproductividad, 15(2). https://doi.org/10.32854/agrop.v15i2.2051

Geetha, P., and Rani, I. (2020). Post harvest technology and value addition of tomatoes. Food Science Research Journal, 11(2), 217-229. https://doi.org/10.15740/HAS/FSRJ/11.2/217-229

Guimaraes, J. E., de la Fuente, B., Pérez-Gago, M. B., Andradas, C., Carbó, R., Mattiuz, B. H., and Palou, L. (2019). Antifungal activity of GRAS salts against Lasiodiplodia theobromae in vitro and as ingredients of hydroxypropyl methylcellulose-lipid composite edible coatings to control Diplodia stem-end rot and maintain postharvest quality of citrus fruit. International Journal of Food Microbiology, 301, 9-18. https://doi.org/10.1016/j.ijfoodmicro.2019.04.008

González-Estrada, R. R., Vega-Arreguín, J., Robles-Villanueva,B. A., Velázquez-Estrada, R. M., Ramos-Guerrero, A. and Gutiérrez-Martínez, P. (2020). Evaluación in vitro de productos químicos no convencionales para el control de Penicillium citrinum. Polibotánica, 49, 161–172. https://doi.org/10.18387/polibotanica.49.11

Guo, H., Qiao, B., Ji, X., Wang, X. and Zhu, E. (2020). Antifungal activity and possible mechanisms of submicron chitosan dispersions against Alternaria alternata. Postharvest Biology and Technology, 161 (December 2018), 0–1. https://doi.org/10.1016/j.postharvbio.2019.04.009

Gutiérrez Carranza, I. R. (2018). Efecto del insecticida clorantraniliprole sobre el crecimiento, la esporulación, la germinación y capacidad entomopatógena de Beauveria bassiana en condiciones de laboratorio. Tesis de Microbiología y Parasitología. Universidad Nacional de Trujillo (UNT). http://dspace.unitru.edu.pe/handle/UNITRU/11995

Gutierréz Martínez, P., Bautista-Baños, S., Berúmen-Varela, G., Ramos-Guerrero, A. and Hernández-Ibañez, A. M. (2017). In vitro response of Colletotrichum to chitosan. Effect on incidence and quality on tropical fruit. Enzymatic expression in mango. Acta Agronómica, 66 (2), 282–289. https://doi.org/10.15446/acag.v66n2.53770

Hameed, A., Alam, M. W., Rehman, A., Naveed, K., Atiq, M., Rajput, N. A., Sarfraz S., Liaqat N. and Tahir, F. A. (2019). First report of Geotrichum candidum causing postharvest sour rot of carrot in Punjab, Pakistan. Journal of Plant Pathology, 101(3), 763-763. https://doi.org/10.1007/s42161-018-00227-w

Herrera-González, J. A., Hernández-Sánchez, D. A., Bueno-Rojas, D. A., Ramos-Bell, S., Velázquez-Estrada, R. M., Bautista-Rosales, P. U., and Gutierrez-Martinez, P. (2022). Effect of commercial chitosan on in vitro inhibition of Colletotrichum siamense, fruit quality and elicitor effect on postharvest avocado fruit. Revista Mexicana de Ingeniería Química, 21(1) https://doi.org/10.24275/rmiq/Bio2706

Horita, H., and Hatta, Y. (2016). Sour rot of carrot caused by Geotrichum candidum in Japan. Journal of General Plant Pathology, 82 (1), 65–68. https://doi.org/10.1007/s10327-015-0638-3

Hua, C., Li, Y., Wang, X., Kai, K., Su, M., Zhang, D., and Liu, Y. (2019). The effect of low and high molecular weight chitosan on the control of gray mold (Botrytis cinerea) on kiwifruit and host response. Scientia Horticulturae, 246, 700-709. https://doi.org/10.1016/j.scienta.2018.11.038

Kader, A. A. (Ed.). (2011). Tecnología postcosecha de cultivos hortofrutícolas. University of California, Agriculture and Natural Resources (UCANR) Publications. 584. https://books.google.com.mx/books?id=x62K8WywAt4C

Karpova, N., Shagdarova, B., Lunkov, A., Il’ina, A., and Varlamov, V. (2021). Antifungal action of chitosan in combination with fungicides in vitro and chitosan conjugate with gallic acid on tomatoes against Botrytis cinerea. Biotechnology Letters, 43(8), 1565-1574. https://doi.org/10.1007/s10529-021-03138-6

Ke, C. L., Deng, F. S., Chuang, C. Y. and Lin, C. H. (2021). Antimicrobial actions and applications of chitosan. Polymers, 13(6), 904. https://doi.org/10.3390/polym13060904

Kim, Y.K., Kim, T.S., Shim, H.S., Park, K.S., Yeh, W.H., Hong, S.J., Shim, C.K., Kim J.S., Park, J.H., Han, E.J., Lee, M.H. and Jee, H.J. (2011). First report of sour rot on post-harvest oriental melon, tomato, cucumber, potato, pumpkin and carrot caused by Geotrichum candidum. Research in Plant Disease, 17(2), 232–234. https://doi.org/10.5423/RPD.2011.17.2.232

Lai, T., Bai, X., Wang, Y., Zhou, J., Shi, N., and Zhou, T. (2015). Inhibitory effect of exogenous sodium bicarbonate on development and pathogenicity of postharvest disease Penicillium expansum. Scientia Horticulturae, 187, 108-114. https://doi.org/10.1016/j.scienta.2015.03.010

Leger, R. S., Goettel, M., Roberts, D. W. and Staples, R. C. (1991). Prepenetration events during infection of host cuticle by Metarhizium anisopliae. Journal of Invertebrate Pathology, 58(2), 168-179. https://doi.org/10.1016/0022-2011(91)90061-T

Ma, W., Zhang, Y., Wang, C., Liu, S. and Liao, X. (2018). A new disease of strawberry, fruit rot, caused by Geotrichum candidum in China. Plant Protection Science, 54(2), 92-100. https://doi.org/10.17221/76/2017-PPS

Martínez-Blay, V., Pérez-Gago, M. B., de la Fuente, B., Carbó, R., and Palou, L. (2020). Edible coatings formulated with antifungal GRAS salts to control citrus anthracnose caused by Colletotrichum gloeosporioides and preserve postharvest fruit quality. Coatings, 10(8), 730. https://doi.org/10.3390/coatings10080730

Martínez-Moreno, F., y Garfias, A. J., Hernandez-Orihuela, A. L., and Martínez-Antonio, A. (2021). Avocado seed hydrolysate as an alternative growth medium for fungi. Revista Mexicana de Ingeniería Química, 20(2), 569-580. https://doi.org/10.24275/rmiq/Bio1951

Meng, X., Yang, L., Kennedy, J. F. and Tian, S. (2010). Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydrate Polymers, 81(1), 70–75. https://doi.org/10.1016/j.carbpol.2010.01.057

Mirzadeh Abgarmi, Z., Najafiniya, M., and Ramezani, H. (2021). The antifungal activity of some chemical salts against Fusarium oxysporum f. sp. radicis-cucumerinum causing cucumber root and stem rot disease. Journal of Crop Protection, 10(1), 107-117. http://jcp.modares.ac.ir/article-3-40965-en.html

Moline, H. E. (1984). Comparative studies with two Geotrichum species inciting postharvest decays of tomato fruit. Plant Disease, 68(1), 46-48. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9029665

No, H. K., Meyers, S. P., Prinyawiwatkul, W. and Xu, Z. (2007). Applications of chitosan for improvement of quality and shelf life of foods: a review. Journal of Food Science, 72(5), R87-R100. https://doi.org/10.1111/j.1750-3841.2007.00383.x

Oladiran, A. O. and Iwu, L. N. (1993). Studies on the fungi associated with tomato fruit rots and effects of environment on storage. Mycopathologia, 121(3), 157–161. https://doi.org/10.1007/BF01104071

Palou, L. (2018). Postharvest treatments with GRAS salts to control fresh fruit decay. Horticulturae, 4(4), 46. https://doi.org/10.3390/horticulturae4040046

Palou, L., Smilanick, J. L. and Crisosto, C. H. (2009). Evaluation of food additives as an alternative or complementary chemicals to conventional fungicides for the control of major postharvest diseases of stone fruit. Journal of Food Protection, 72(5), 1037–1046. https://doi.org/10.4315/0362-028X-72.5.1037

Parvin, N., Kader, M. A., Huque, R., Molla, M. E. and Khan, M. A. (2018). Extension of shelf-life of tomato using irradiated chitosan and its physical and biochemical characteristics. International Letters of Natural Sciences, 67, 16–23. https://doi.org/10.18052/www.scipress.com/ILNS.67.16

Peralta-Ruiz, Y., Tovar, C. D. G., Sinning-Mangonez, A., Coronell, E. A., Marino, M. F. and Chaves-Lopez, C. (2020). Reduction of postharvest quality loss and microbiological decay of tomato “chonto” (Solanum lycopersicum L.) using chitosan-e essential oil-based edible coatings under low-temperature storage. Polymers, 12(8), 1822. https://doi.org/10.3390/polym12081822

Plaza, P., Usall, J., Teixidó, N. and Vinas, I. (2003). Effect of water activity and temperature on germination and growth of Penicillium digitatum, P. italicum and Geotrichum candidum. Journal of Applied Microbiology, 94(4), 549-554. https://doi.org/10.1046/j.1365-2672.2003.01909.x

Ramos-Guerrero, A., González-Estrada, R. R., Hanako-Rosas, G., Bautista-Baños, S., Acevedo-Hernández, G., Tiznado-Hernández, M. E. and Gutiérrez-Martínez, P. (2018). Use of inductors in the control of Colletotrichum gloeosporioides and Rhizopus stolonifer isolated from soursop fruits: in vitro tests. Food Science and Biotechnology, 27(3), 755–763. https://doi.org/10.1007/s10068-018-0305-5

Ramos-Guerrero, A., González-Estrada, R. R.,Romanazzi, G., Landi, L. and Gutiérrez-Martínez, P. (2020). Effects of chitosan in the control of postharvest anthracnose of soursop (Annona muricata) fruit. Revista Mexicana de Ingeniería Química 19(1), 99-108. https://doi.org/10.24275/rmiq/Bio527

Rayón-Díaz, E., Birke-Biewendt, A. B., Velázquez-Estrada, R. M., González-Estrada, R. R., Ramírez-Vázquez, M., Rosas-Saito, G. H. and Gutierrez-Martinez, P. (2021). Sodium silicate and chitosan: an alternative for the in vitro control of Colletotrichum gloeosporioides isolated from papaya (Carica papaya L.). Revista Bio ciencias, 8. https://doi.org/10.15741/revbio.08.e1059

Rives-Castillo, S. C. H., Ventura-Aguilar, R. I., Hernández-López, M. and Bautista-Baños, S. (2018). Extensión de la vida de anaquel y conservación postcosecha de jitomates var. ´Kenton´ mediante la aplicación de recubrimientos biodegradables. Acta Agricola y Pecuaria, 4(3), 80–91. https://doi.org/10.30973/aap/2018.4.3/2

Robledo-Leal, E., Elizondo-Zertuche, M., Treviño-Rangel, R. D. J., González, G. M., Hernández-Luna, C. and Huerta-González, N. (2016). Isolation of killer yeasts from ants of the genus Atta and their effect on the red tomato’s fungal pathogen Geotrichum candidum. Revista Mexicana de Fitopatología, 34(3), 258-269. https://doi.org/10.18781/r.mex.fit.1605-3

Rodríguez-Guzmán, C. A., Montaño-Leyva, B., Velázquez-Estrada, R. M., Sánchez-Burgos, J. A., García-Magaña, M. de L., González-Estrada, R. R. and Gutiérrez-Martínez, P. (2021). Estado actual de métodos alternativos, de control de hongos y su efecto en la calidad postcosecha de frutos de jitomate (Solanum lycopersicum). TIP Revista Especializada en Ciencias Químico-Biológicas, 24: 1-15 https://doi.org/10.22201/fesz.23958723e.2021.388

Rodríguez Pedroso, A. T., Plascencia Jatomea, M., Bautista Baños, S., Cortez Rocha, M. O. and Ramírez Arrebato, M. Á. (2016). Actividad antifúngica in vitro de quitosanos sobre Bipolaris oryzae patógeno del arroz. Acta Agronómica, 65(1), 98-103. https://doi.org/10.15446/acag.v65n1.48235

Ruiz Martínez, J., Vicente, A. A., Montañéz Saenz, J. C., Rodríguez Herrera, R., and Aguilar González, C. N. (2012). Un tesoro perecedero en Mexico: el tomate, tecnologias para prolongar su vida de anaquel. Investigacion y Ciencia, (54), 57-63. http://www.uaa.mx/investigacion/revista

Salas-Méndez, E. de J., Vicente, A., Pinheiro, A. C., Ballesteros, L. F., Silva, P., Rodríguez-García, R., Hernández-Castillo, F. D., Díaz-Jiménez, M. de L. V., Flores-López, M. L., Villarreal-Quintanilla, J. Á., Peña-Ramos, F. M., Carrillo-Lomelí, D. A. and Jasso de Rodríguez, D. (2019). Application of edible nanolaminate coatings with antimicrobial extract of Flourensia cernua to extend the shelf-life of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 150, 19–27. https://doi.org/10.1016/j.postharvbio.2018.12.008

Salvador, L., Miranda, S. P., Aragón, N. and Lara, V. (1999). Recubrimiento de quitosán en aguacate. Journal of the Mexican Chemical Society, 43(1), 18-23. https://www.redalyc.org/articulo.oa?id=47543204

Santos Montero, W. Y. and Flores Herrera, M. M. (2017). Efecto del quitosano sobre la germinación, crecimiento, esporulación y capacidad antagónica de Trichoderma asperellum. Tesis de Microbiología y Parasitología, Universidad Nacional de Trujillo, Perú. http://dspace.unitru.edu.pe/handle/UNITRU/10894

SIAP. Servicio de Información Agroalimentaria y Pesquera. (2021). Atlas agroalimentario 2018. https://www.gob.mx/siap/acciones-y-programas/atlas-agroalimentario-2018

Silva Jùnior, S., Stamford, N. P., Lima, M. A. B., Arnaud, T. M. S., Pintado, M. M. and Sarmento, B. F. (2014). Characterization and inhibitory activity of chitosan on hyphae growth and morphology of Botrytis cinerea plant pathogen. International Journal of Applied Research in Natural Products, 7(4), 31-38. http://hdl.handle.net/10400.14/17568

Talibi, I., Askarne, L., Boubaker, H., Boudyach, E. H. and Oumar, A. A. B. (2015). Effect of organic and inorganic salts as alternative strategy for the control of postharvest citrus sour rot agent Geotrichum candidum. Acta Horticulturae, 1065, 1577-1583. https://doi.org/10.17660/ActaHortic.2015.1065.201

Tawfik, A., Koriem, A., Younis, S., and Elian, M. (2021). Effect of some salts on the mycelial growth and spore germination of fungi caused fruit rot of sweet pepper post-harvest diseases pathogens. Journal of Productivity and Development, 26(3), 433-446. https://doi.org/10.21608/JPD.2021.181112

Thomidis, T., Prodromou, I., Farmakis, A. and Zambounis, A. (2021). Effect of temperature on the growth of Geotrichum candidum and chemical control of sour rot on tomatoes. Tropical plant pathology, 46(5) 545-552 https://doi.org/10.1007/s40858-021-00453-1

Türkkan, M. (2019). Effect of various salts on the growth and development of Geotrichum candidum the causal agent of carrot sour rot. Journal of Phytopathology, 167(4), 230–239. https://doi.org/10.1111/jph.12790

Türkkan, M. and Erper, I. (2014). Evaluation of antifungal activity of sodium salts against onion basal rot caused by Fusarium oxysporum f. sp. cepae. Plant Protection Science, 50(1), 19–25. https://doi.org/10.17221/9/2013-PPS

Türkkan, M., Özcan, M. and Erper, İ. (2017). Antifungal effect of carbonate and bicarbonate salts against Botrytis cinerea, the casual agent of grey mould of kiwifruit. Akademik Ziraat Dergisi, 6(2), 107-114. https://doi.org/10.29278/azd.371066

Varlamov, V. P., Il’ina, A. V., Shagdarova, B. T., Lunkov, A. P., and Mysyakina, I. S. (2020). Chitin/chitosan and its derivatives: fundamental problems and practical approaches. Biochemistry (Moscow), 85(1), 154-176. https://doi.org/10.1134/S0006297920140084

Vásquez, L., Rivera, G., Miranda, Y., Soto, C., Cevallos, P., Rodríguez, I., Couto, R. and Crespo, D. (2021). Antifungal effect of chitosan of different molecular weight against Colletotrichum alatae under in vitro conditions. Journal of Microbiology & Experimentation. 9(1), 9-13. http://www.dspace.uce.edu.ec/handle/25000/22873

Venditti, T., D'hallewin, G., Ladu, G., Petretto, G. L., Pintore, G., and Labavitch, J. M. (2018). Effect of NaHCO3 treatments on the activity of cell‐wall‐degrading enzymes produced by Penicillium digitatum during the pathogenesis process on grapefruit. Journal of the Science of Food and Agriculture, 98(13), 4928-4936. https://doi.org/10.1002/jsfa.9025

Xing, K., Xing, Y., Liu, Y., Zhang, Y., Shen, X., Li, X., Miao, X., Feng, Z., Peng, X. and Qin, S. (2018). Fungicidal effect of chitosan via inducing membrane disturbance against Ceratocystis fimbriata. Carbohydrate Polymers, 192, 95–103. https://doi.org/10.1016/j.carbpol.2018.03.053

Yildirim, E., Alici, E., Erper, I., Turkkan, M., and Ozer, G. (2022). Sensitivity of Fusarium oxysporum f. sp. melongenae, the causal agent of Fusarium wilt of eggplant to some ammonium, potassium, and sodium compounds in vitro and in vivo bioassays. Archives of Phytopathology and Plant Protection, 1-14. https://doi.org/10.1080/03235408.2022.2062538

Younes, I., Sellimi, S., Rinaudo, M., Jellouli, K. and Nasri, M. (2014). Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. International Journal of Food Microbiology, 185, 57-63. https://doi.org/10.1016/j.ijfoodmicro.2014.04.029

Youssef, K., and Hussien, A. (2020). Electrolysed water and salt solutions can reduce green and blue molds while maintain the quality properties of ‘Valencia’late oranges. Postharvest Biology and Technology, 159, 111025. https://doi.org/10.1016/j.postharvbio.2019.111025

Zheng, K., Lu, J., Li, J., Yu, Y., Zhang, J., He, Z., Ismail M. O., Wu J., Xie X., Li X., Xu. G., Dou, D., and Wang, X. (2021). Efficiency of chitosan application against Phytophthora infestans and the activation of defence mechanisms in potato. International Journal of Biological Macromolecules, 182, 1670-1680. https://doi.org/10.1016/j.ijbiomac.2021.05.097

Zivkovic, S., Stevanovic, M., Djurovic, S., Ristic, D. and Stosic, S. (2018). Antifungal activity of chitosan against Alternaria alternata and Colletotrichum gloeosporioides. Pesticidi i Fitomedicina, 33(3–4), 197–204. https://doi.org/10.2298/PIF1804197Z

Published
2022-08-28
How to Cite
Rodríguez-Guzmán, C., Montaño-Leyva, B., Sánchez-Burgos, J., Bautista-Rosales, P., & Gutierrez-Martinez, P. (2022). Chitosan and GRAS substances application in the control of Geotrichum candidum isolated from tomato fruits (Lycopersicum esculentum L.) in the state of Nayarit, Mexico: In vitro tests. Revista Mexicana De Ingeniería Química, 21(3), Bio2790. https://doi.org/10.24275/rmiq/Bio2790
Section
Biotechnology

Most read articles by the same author(s)