Behavior of the AB52 dye degradation in liquid medium by different electrical power non-thermal plasma at atmospheric pressure

Keywords: non-thermal plasma, water treatment, advanced oxidation processes, toxicity, degradation.

Abstract

The degradation of Acid Black 52 (AB52) dye in a liquid medium derived from exposure to a non-thermal plasma of air at atmospheric pressure is quantified experimentally. The changes observed in the dilution are measured and compared as a function of the electrical power of plasma generation (15.0 W, 22.5 W, 30.0 W, and 45.0 W), as well as the exposure time (two hundred minutes per electrical power). Dye degradation for each electrical power of plasma was established by comparing the results from UV / VIS spectrophotometry measurements (absorbance, concentration, and percentage of degradation), pH, COD, and TOC. In addition, the toxicity change dilution was determined by performing bioassays using Lactuca sativa lettuce seeds. The changes for each of the variables measured as a function of the electrical power of plasma generation show the following specific mathematical behaviors: Logarithmic (Temperature, TOC, and pH), potential (COD), and linear (Absorbance). Obtained results showed that the increase in the degradation of the dye and the change in toxicity depends directly on the electrical power and the time of exposure to plasma. The maximum degradation obtained from the samples analyzed at the end of the experiments corresponds to 45.0 W, that is, higher electrical power, a higher percentage of degradation.

References

Agrawal, S., Tipre, D., Patel, B. and Dave, S. (2014). Optimization of triazo Acid Black 210 dye degradation by Providencia sp. SRS82 and elucidation of degradation pathway. Process Biochemistry 48, 110-119. http://dx.doi.org/10.1016/j.procbio.2013.10.006

Alarcón-Hernández, F.B., Fuentes-Albarrán, M.C., Gadea-Pacheco, J.L., Tlatelpa-Becerro, A. and Cañete-Cabrera, V.A. (2022). Evaluation of the degradation process of diethyl (3H-1-Ethoxy-3-phenoxazinylidene) ammonium chloride in water, after exposure to nonthermal plasma at atmospheric pressure. Journal of Chemistry 2022, 1-8. https://doi.org/10.1155/2022/4486227

Ángel-Hernández, B., Hernández-Aldana, F., Pérez-Osorio, G. and Gutiérrez-Arias, J.E.M. (2021). Municipal wastewater treatment by photocatalysis: comparison between UV lamp and solar radiation using TiO2 and ZnO/TiO2 synthesized catalysts. Revista Mexicana de Ingeniería Química 20, 1-15. https://doi.org/10.24275/rmiq/Cat2438

Arabzadeh, A. and Salimi, A. (2016). One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation. Journal of Colloid and Interface Science 479, 43–54. https://doi.org/10.1016/j.jcis.2016.06.036

Comisión Nacional del Agua (2018). Estadísticas del Agua en México, edición 2018. Secretaría del Medio Ambiente y Recursos Naturales, México.

CONAGUA. (2022). Sistema Nacional de Información del Agua. Available at: http://sina.conagua.gob.mx/. Accessed: April 15, 2022.

Fahmy, A., El-Zomrawy, A., Saeed, A.M., Sayed, A.Z., Ezz El-Arab, M.A. and Shehata, H.A. (2018). Modeling and optimizing Acid Orange 142 degradation in aqueous solution by non-thermal plasma. Chemosphere 210, 102-109. https://doi.org/10.1016/j.chemosphere.2018.06.176

Gómez, A., Torres-Arenas, A.J., Vergara-Sánchez, J., Torres, C., Reyes, P.G., Martínez, H. and Saldarriaga-Noreña, H. (2017). Physical-chemical characterization of the textile dye Azo AB52 degradation by corona plasma. AIP Advances 7, 1-11. https://doi.org/10.1063/1.4993181

Jiang, B., Zheng, J., Qiu, S., Wu, M., Qinhui, Z., Yan, Z. and Xue, Q. (2014). Review on electrical discharge plasma technology for wastewater remediation. Chemical Engineering Journal 236, 348-368. http://dx.doi.org/10.1016/j.cej.2013.09.090

Kapoor, R.T., Danish, M., Singh, R.S., Rafatullah, M. and Abdul Khalil, H.P.S. (2021). Exploiting microbial biomass in treating azo dyes contaminated wastewater: Mechanism of degradation and factors affecting microbial efficiency. Journal of Water Process Engineering 43, 1-17. https://doi.org/10.1016/j.jwpe.2021.102255

Martínez, M. A., Octaviano, C. A., Araiza, O. S. and Ruíz, R.U. (2018). Development of routes for the implementation of nationally determined contributions in terms of mitigation of greenhouse gases and compounds (GyCEI) of the Wastewater sector in Mexico. National Institute of Ecology and Climate Change. Available at: https://www.gob.mx/cms/uploads/attachment/file/461759/Agropecuario_compressed__2_.pdf. Accessed: June 17, 2022.

Merouani, D.R., Abdelmalek, F., Taleb, F., Martel, M., Semmoud, A. and Addou, A. (2015). Plasma treatment by gliding arc discharge of dyes/dye mixtures in the presence of inorganic salts. Arabian Journal of Chemistry 8, 155-163. https://doi.org/10.1016/j.arabjc.2011.01.034

Miao, J., Zhang, R. and Zhang, L. (2018). Photocatalytic degradations of three dyes with different chemical structures using ball-milled TiO2. Materials Research Bulletin 97, 109-114. http://dx.doi.org/10.1016/j.materresbull.2017.08.032

Rahim, S., Abdul, A.A. and Wan, W.M.A. (2014). Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. Journal of Cleaner Production 64, 24-35. https://doi.org/10.1016/j.jclepro.2013.09.013

Ramos, R.O., Albuquerque, M.V.C., Lopes, W.S., Sousa, J.T. and Leite, V.D. (2020). Degradation of indigo carmine by photo-Fenton, Fenton, H2O2/UV-C and direct UV-C: Comparison of pathways, products and kinetics. Journal of Water Process Engineering 37, 1-9. https://doi.org/10.1016/j.jwpe.2020.101535

Rocha, O.P., Cesila, C.A., Christovam, E.M., Barros, S.B., Zanoni, M.V. and de Oliveira, D.P. (2017). Ecotoxicological risk assessment of the "Acid Black 210" dye. Toxicology 376, 113-119. https://doi.org/10.1016/j.tox.2016.04.002

Safenraider, A.P., Piazza, L.D., Amadeu, G. and Angelo, N. (2020). Degradation of indigo carmine in water induced by non-thermal plasma, ozone and hydrogen peroxide: A comparative study and by-product identification. Chemosphere 244, 1-9, https://doi.org/10.1016/j.chemosphere.2019.125502

Sarangapani, C., Misra, N.N., Milosavljevic, V., Bourke, P., O´Regan, F. and Cullen, P.J. (2016). Pesticide degradation in water using atmospheric air cold plasma, Journal of Water Process Engineering 9, 225–232. https://doi.org/10.1016/j.jwpe.2016.01.003

Shimizu, T., Kishimoto, N. and Sato, T. (2020). Effect of electrical conductivity of water on plasma-driven gas flow by needle-water discharge at atmospheric pressure. Journal of Electrostatics 104, 1-8. https://doi.org/10.1016/j.elstat.2020.103422

Silvestri, S. and Foletto, E.L. (2017). Preparation and characterization of Fe2O3/TiO2/clay plates and their use as photocatalysts. Ceramics International 43, 14057-14062. https://doi.org/10.1016/j.ceramint.2017.07.140

Sobrero M.C. and Ronco A.E. (2004). 4.4: Protocolos de Prueba. Bioensayo de Toxicidad Aguda con Semillas de Lechuga (Lactuca sativa). In: Ensayos Toxicológicos y Métodos de Evaluación de Calidad de Aguas. Estandarización, Intercalibración, Resultados y Aplicaciones. (G. Castillo, ed.), Pp. 71-79. Joint edition IDRC, SEMARNAT, IMTA, México.

Solís, M., Gil, J.L, Solís, A., Pérez, H.I., Manjarrez, N. and Perdomo, M. (2013). The sedimentation process a simple method to diminish contaminants in textile effluents. Revista Mexicana de Ingeniería Química 12, 585-594. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1555

Torres-Segundo, C., Vergara-Sánchez, J., Montiel-Palacios, E., Gómez-Díaz, A., Reyes-Romero, P.G. and Martínez-Valencia, H. (2019). Comparative study of the degradation process of Azo textile dyes AB52 and AB210 in water using a type-Corona electric discharge. Desalination and Water Treatment 170, 361-368. https://doi.org/10.5004/dwt.2019.24749

Vergara-Sánchez, J., Torres-Segundo, C., Montiel-Palacios, E., Gómez-Díaz, A., Reyes-Romero, P.G. and Martínez-Valencia, H. (2017). Degradation of Textile Dye AB 52 in an Aqueous Solution by Applying a Plasma at Atmospheric Pressure. IEEE Transactions on Plasma Science 45, 479-484. https://doi.org/10.1109/TPS.2017.2663845

Vergara-Sánchez, J., Torres-Segundo, C., Montiel-Palacios, E., Gómez-Díaz, A., Reyes-Romero, P.G. and Martínez-Valencia, H. (2020). Discoloration of a textile dyes mixture in an aqueous solution using a corona discharge. Desalination and Water Treatment 203, 432-439. https://doi.org/10.5004/dwt.2020.26208

Wang, X., Zhou, M. and Jin, X. (2012). Application of glow discharge plasma for wastewater treatment. Electrochimica Acta 83, 501-512. https://doi.org/10.1016/j.electacta.2012.06.131

WWAP (2017). The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource. Editorial UNESCO, France.

Zaruma-Arias, P.E., Núñez-Núñez, C.M., Villanueva-Fierro, I., Cháirez-Hernández, I., Lares-Asseff, I.A., Gurrola-Reyes, J.N. and Proal-Nájera, J.B. (2021). Methylthionine chloride degradation on pilot UV-C reactors: Kinetics of photolytic and heterogeneous photocatalytic reactions. Revista Mexicana de Ingeniería Química 20, 649-662. https://doi.org/10.24275/rmiq/Cat2035

Zhang, C., Chen, H., Xue, G., Liu, Y., Chen, S. and Jia, C. (2021). A critical review of the aniline transformation fate in azo dye wastewater treatment. Journal of Cleaner Production 321, 1-16. https://doi.org/10.1016/j.jclepro.2021.128971

Published
2022-07-08
How to Cite
Alarcón-Hernández, F., Montiel-Palacios, E., Fuentes-Albarrán, M., Tabarez de León, A., Gadea-Pacheco, J., & Tlatelpa-Becerro, A. (2022). Behavior of the AB52 dye degradation in liquid medium by different electrical power non-thermal plasma at atmospheric pressure. Revista Mexicana De Ingeniería Química, 21(2), IA2793. https://doi.org/10.24275/rmiq/IA2793
Section
Environmental Engineering

Most read articles by the same author(s)