A systematic derivation of the Monod equation for multi-substrate conditions

  • V. Sanchez-Vazquez
  • F. Martinez-Martinez
Keywords: Monod equation, multi-substrate; kinetics scheme; series expansion.


A simple kinetics scheme was considered for the systematic derivation of the Monod equation for multi-substrate conditions. The model derivation is based on a series expansion of the system solution in terms of a characteristic time constant. The multi-substrate Monod equation is structurally similar to the single-substrate Monod equation, containing terms that reflect the competitive interactions between the different substrates. Biodegradation of phenol-toluene was used to illustrate the ability of the Monod model for describing experimental data.


Akermann, A., Weiermüller, J., Lenz, S., Christmann, J., Ulber, R. (2021). Kinetic model for simultaneous saccharification and fermentation of brewers’ spent grain liquor using Lactobacillus delbrueckii subsp. lactis. Biotechnology and Bioprocess Engineering 26(1), 114-124. https://doi.org/10.1007/s12257-020-0153-z

Bailey, J.E., D.F. Ollis. (1986). Biochemical Engineering Fundamentals, 2nd ed., McGraw-Hill, New York.

Durruty, I., Okada, E., González, J. F., Murialdo, S. E. (2011). Multisubstrate monod kinetic model for simultaneous degradation of chlorophenol mixtures. Biotechnology and Bioprocess Engineering 16(5), 908-915. doi.org/10.1007/s12257-010-0418-z

García-Rivero, M., Peralta-Pérez, M. R. (2008). Cometabolism the biodegradation of hydrocarbons. Revista Mexicana de Ingeniería Química 7, 1-12. https://doi.org/https://doi.org/10.24275/rmiq/Bio379

Gaudy, A.F., E.T. Gaudy. (1980). Microbiology for Environmental Scientists and Engineers, McGraw-Hill, New York.

González-Figueredo, C., Rojas-Rejón, O. A., Martínez-Vera-Negrete, A., Carranza-Volquarts, A. E., Estrada-Girón, F. J., Peña-Partida, J. C. (2021). Kinetic parameters of Lactobacillus plantarum and Saccharomyces boulardii growing in a beet molasses culture media. Revista Mexicana de Ingeniería Química 20, 467-478. https://doi.org/10.24275/rmiq/Bio2002

Guha, S., Peters, C. A., Jaffé, P. R. (1999). Multisubstrate biodegradation kinetics of naphthalene, phenanthrene, and pyrene mixtures. Biotechnology and Bioengineering 65(5), 491-499. doi.org/10.1002/(SICI)1097-0290(19991205)65:5<491::AID-BIT1>3.0.CO;2-H

Miramontes-Martínez, L. R., Gomez-Gonzalez, R., Botello-Álvarez, J. E., Escamilla-Alvarado, C., Albalate-Ramírez, A., Rivas-García, P. (2020). Semi-continuous anaerobic co-digestion of vegetable waste and cow manure: a study of process stabilization. Revista Mexicana de Ingeniería Química, 19, 1117-1134. https://doi.org/10.24275/rmiq/proc920

Miri, S., Davoodi, S. M., Darvanjooghi, M. H. K., Brar, S. K., Rouissi, T., Martel, R. (2021). Precision modelling of co-metabolic biodegradation of recalcitrant aromatic hydrocarbons in conjunction with experimental data. Process Biochemistry 105, 113-127. doi.org/10.1016/j.procbio.2021.03.026

Moser, A. (1983). Formal macroapproach to bioprocessing‐modeling with analogies. Acta Biotechnologica 3(3), 195-216. doi.org/10.1002/abio.370030302

Reardon, K. F., Mosteller, D. C., Bull Rogers, J. D. (2000). Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnology and Bioengineering 69(4), 385-400. 10.1002/1097-0290(20000820)69:4<385::AID-BIT5>3.0.CO;2-Q

Xu, P. (2020). Analytical solution for a hybrid Logistic‐Monod cell growth model in batch and continuous stirred tank reactor culture. Biotechnology and Bioengineering 117(3), 873-878. doi.org/10.1002/bit.27230

How to Cite
Meraz, M., Sanchez-Vazquez, V., & Martinez-Martinez, F. (2022). A systematic derivation of the Monod equation for multi-substrate conditions. Revista Mexicana De Ingeniería Química, 21(2), Bio2798. https://doi.org/10.24275/rmiq/Bio2798