Chemical modification of rice (Oryza sativa) and potato (Solanum tuberosum) starches by silanization with trimethoxy(methyl)silane

  • A.M. Salgado-Delgado TecNm/ Instituto Tecnológico de Zacatepec
  • E. Lozano-Pineda
  • R. Salgado-Delgado
  • J.P. Hernández-Uribe
  • A. Olarte-Paredes
  • M.J. Granados-Baeza
Keywords: Hydrophobic starch, hydrophobization, modified starch, A98 rice, trimethoxymethylsilane.

Abstract

Rice starch of the A98 variety, with a denomination of origin of the state of Morelos, and potato starch were silanized to modify hydrophobicity and improve functional properties, providing added value to these starch sources and promoting their use in the formulation of biodegradable materials that require a degree of hydrophobicity, such as packaging materials. Fourier transform infrared spectroscopy analysis determined the presence of trimethoxy(methyl) silane in starch. Differential scanning calorimetry was used to determine the thermal properties and morphology was evaluated using scanning electron microscopy while changes in functional properties were assessed by identifying contact angle, swelling power, water absorption capacity, and oil absorption capacity. Hydrophobic silanized starches were obtained: Potato starch showed a contact angle of 132 ° and rice starch, 130 °. They exhibited changes in density and functionality; both swelling power and water absorption capacity were reduced in potato starch but increased in rice starch.

References

Ali, A., Wani, T. A., Wani, I. A., and Masoodi, F. A. (2016). Comparative study of the physico-chemical properties of rice and corn starches grown in Indian temperate climate. Journal of the Saudi Society of Agricultural Sciences, 15 (1), 75-82. https://doi.org/10.1016/j.jssas.2014.04.002

Amort, J., Hanisch, H., Klapdor, U., van der Maas, H., and Suerken, H. P. (1985). U.S. Patent No. 4,540,777. Washington, DC: U.S. Patent and Trademark Office.

Ashwar, B. A., Gani, A., Wani, I. A., Shah, A., Masoodi, F. A., and Saxena, D. C. (2016). Production of resistant starch from rice by dual autoclaving-retrogradation treatment: Invitro digestibility, thermal and structural characterization. Food Hydrocolloids, 56, 108-117. https://doi.org/10.1016/j.foodhyd.2015.12.004

Ashwar, B. A., Gani, A., Shah, A., and Masoodi, F. A. (2017). Physicochemical properties, in-vitro digestibility and structural elucidation of RS4 from rice starch. International journal of biological macromolecules, 105, 471-477. https://doi.org/10.1016/j.ijbiomac.2017.07.057

ASTM D7334-08 (2013). Standard Practice for Surface Wettability of Coatings, Substrates and Pigments by Advancing Contact Angle Measurement. https://www.technormen.de/norm/astm-d7334-08_2013-1.6.2013.html

Awode, A. U., Oladipo, A. A., Guran, M., Yilmaz, O., and Gazi, M. (2020). Fabrication of trichlorovinylsilane-modified-chitosan film with enhanced solubility and antibacterial activity. Polymer Bulletin, 77 (11), 5811-5824. https://doi.org/10.1007/s00289-019-03056-8

Bakierska, M., Molenda, M., Majda, D., and Dziembaj, R. (2014). Functional starch based carbon aerogels for energy applications. Procedia Engineering, 98, 14-19. https://doi.org/10.1016/j.proeng.2014.12.481

Bergel, B. F., da Luz, L. M., and Santana, R. M. C. (2018). Effect of poly (lactic acid) coating on mechanical and physical properties of thermoplastic starch foams from potato starch. Progress in Organic Coatings, 118, 91-96. https://doi.org/10.1016/j.porgcoat.2018.01.029

Bergel, B. F., Araujo, L. L., da Silva, A. L. D. S., and Santana, R. M. C. (2020). Effects of silylated starch structure on hydrophobization and mechanical properties of thermoplastic starch foams made from potato starch. Carbohydrate Polymers, 241, 116274. https://doi.org/10.1016/j.carbpol.2020.116274

Bunkerd, R., Molloy, R., Somsunan, R., Punyodom, W., Topham, P. D., and Tighe, B. J. (2018). Synthesis and Characterization of Chemically‐Modified Cassava Starch Grafted with Poly (2‐Ethylhexyl Acrylate) for Blending with Poly (Lactic Acid). Starch‐Stärke, 70 (11-12), 1800093. https://doi.org/10.1002/star.201800093

Carrillo-Gallardo, R. A. (2018). Propuesta de estrategias innovadoras para la comercialización de la denominación de origen del arroz del estado de Morelos. Caso: La Perseverancia, Jojutla Morelos. Tesis de maestría en comercialización de conocimientos innovadores. Instituto De Investigación En Ciencias Básicas Y Aplicadas, UAEM. Cuernavaca, Morelos. http://riaa.uaem.mx/handle/20.500.12055/471

Castillo, D., Pérez, I., Hernández, A. A., Romero., F. J., Henríquez, R. D., Obregón V., and Rivera, J. (2010). Descripción de superficies de gránulos de almidón de variedades de arroz cubanas, por microscopía electrónica. Revista Cubana del Arroz. 12 (2), 48-56. http://www.actaf.co.cu/revistas/revista-grano/Revista%20en%20PDF%20(Vol%2012%20No%201)/grano12-1.htm

Chávez‐Murillo, C. E., Méndez‐Montealvo, G., Wang, Y. J., and Bello‐Pérez, L. A. (2012). Starch of diverse Mexican rice cultivars: physicochemical, structural, and nutritional features. Starch‐Stärke, 64(9), 745-756. https://doi.org/10.1002/star.201200016

Chen, L., Ma, R., McClements, D. J., Zhang, Z., Jin, Z., and Tian, Y. (2019). Impact of granule size on microstructural changes and oil absorption of potato starch during frying. Food Hydrocolloids, 94, 428-438. https://doi.org/10.1016/j.foodhyd.2019.03.046

Cornejo-Ramírez, Y. I., Martínez-Cruz, O., Del Toro-Sánchez, C. L., Wong-Corral, F. J., Borboa-Flores, J., and Cinco-Moroyoqui, F. J. (2018). The structural characteristics of starches and their functional properties. CyTA-Journal of Food, 16 (1), 1003-1017. https://doi.org/10.1080/19476337.2018.1518343

El-Sabour, M. A., Mohamed, A. L., El-Meligy, M. G., and Al-Shemy, M. T. (2021). Characterization of recycled waste papers treated with starch/organophosphorus-silane biocomposite flame retardant. Nordic Pulp & Paper Research Journal, 36 (1), 108–124. https://doi.org/10.1515/npprj-2020-0075

Gürler, N., Paşa, S., and Temel, H. (2021). Silane doped biodegradable starch-PLA bilayer films for food packaging applications: Mechanical, thermal, barrier and biodegradability properties. Journal of the Taiwan Institute of Chemical Engineers, 123, 261-271. https://doi.org/10.1016/j.jtice.2021.05.030

Hao, Y., Chen, Y., Xia, H., and Gao, Q. (2019). Surface chemical functionalization of starch nanocrystals modified by 3-aminopropyl triethoxysilane. International journal of biological macromolecules, 126, 987-993.. https://doi.org/10.1016/j.ijbiomac.2018.12.200

Hoover, R. (2010). The Impact of heat-moisture treatment on molecular structures and properties of starches isolated from different botanical sources. Critical Reviews in Food Science and Nutrition. 50, 835-847. https://doi.org/10.1080/10408390903001735

López-Carrasquero, F., Contreras, J. M., Barrios, S. E., Giammanco, G., and Laredo, E. (2017). Modificación de almidones mediante el injerto de cadenas de diferente naturaleza. Una alternativa para la obtención de materiales no contaminantes. La Revista Latinoamericana de Metalurgia y Materiales, RLMM. 7, 12-14. https://doi.org/10.1016/j.ijbiomac.2017.02.016

Martínez-Ortiz, M. A., Vargas-Torres, A., Román-Gutiérrez, A. D., Chavarría-Hernández, N., Zamudio-Flores, P. B., Meza-Nieto, M., and Palma-Rodríguez, H. M. (2017). Partial characterization of chayotextle starch-based films added with ascorbic acid encapsulated in resistant starch. International Journal of Biological Macromolecules, 98, 341–347. https://doi.org/10.1016/j.ijbiomac.2017.02.016

Mehling, T., Smirnova, I., Guenther, U., and Neubert, R. H. H. (2009). Polysaccharide-based aerogels as drug carriers. Journal of Non-Crystalline Solids, 355(50-51), 2472-2479. https://doi.org/10.1016/j.jnoncrysol.2009.08.038

Mohamad-Yazid, N. S., Abdullah, N., Muhammad, N., and Matias-Peralta, H. M. (2018). Application of Starch and Starch-Based Products in Food Industry. Journal of Science and Technology, 10(2). https://penerbit.uthm.edu.my/ojs/index.php/JST/article/view/3022

Mohammadi, A., and Moghaddas, J. S. (2020). Mesoporous starch aerogels production as drug delivery matrices: synthesis optimization, ibuprofen loading, and release property. Turkish Journal of Chemistry, 44(3), 614-633. https://doi:10.3906/kim-1912-18

Ozturk, S., Koksel, H., Kahraman, K., and Ng, P. K. (2009). Effect of debranching and heat treatments on formation and functional properties of resistant starch from high-amylose corn starches. European Food Research and Technology, 229(1), 115-125. https://doi.org/10.1007/s00217-009-1032-1

Palma, H. M. (2012). Caracterización de Almidones de diferentes Fuentes tratados con Ácido para la Encapsulación de Vitamina C. Doctorado en Ciencias en Desarrollo de Productos Bióticos. Instituto Politécnico Nacional, Centro de Desarrollo de Productos Bióticos. http://tesis.ipn.mx/handle/123456789/13446

Piñeros-Guerrero, N., Marsiglia-Fuentes, R., and Ortega-Toro, R. (2021). Improvement of the physicochemical properties of composite materials based on cassava starch and polycaprolactone reinforced with sodium montmorillonite. Revista Mexicana De Ingeniería Química, 20(3). https://doi.org/10.24275/rmiq/Alim2416

Qin, Y., Liu, C., Jiang, S., Xiong, L., & Sun, Q. (2016). Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type. Industrial Crops and Products, 87, 182–190. https://doi.org/10.1016/j.indcrop.2016.04.038

Qu, J., and He, L. (2013). Synthesis and properties of silane-fluoroacrylate grafted starch. Carbohydrate polymers, 98(1), 1056-1064. https://doi.org/10.1016/j.carbpol.2013.07.015

Sirivongpaisal, P. (2008). Structure and functional properties of starch and flour from bambarra groundnut. Songklanakarin Journal of Science & Technology, 30. https://www.researchgate.net/publication/26517229_Structure_and_functional_properties_of_starch_and_flour_from_bambara_groundnut

Smits A., Ruhnau, F., Vliegenthart, J., y Van Soest, J. (1998) Ageing of starch based systems as observed with FT-IR and Solid state NMR spectroscopy. Starch/Starke. 50. 478-483. https://doi.org/10.1002/(SICI)1521-379X(199812)50:11/12<478::AID-STAR478>3.0.CO;2-P

Tagliapietra, B. L., Felisberto, M. H. F., Sanches, E. A., Campelo, P. H., and Clerici, M. T. P. S. (2021). Non-conventional starch sources. Current Opinion in Food Science, 39, 93-102. https://doi.org/10.1016/j.cofs.2020.11.011

Trujillo-Ramírez, D., Bustos-Vázquez, M., Rodríguez-Durán, L., and Torres-de los Santos, R. (2021). Rice husk (Oryza sativa) as support in the immobilization of yeast cells. Revista Mexicana De Ingeniería Química, 21(1). https://doi.org/10.24275/rmiq/Bio2558.

Wei, B., Sun, B., Zhang, B., Long, J., Chen, L., and Tian, Y. (2016). Synthesis, characterization and hydrophobicity of silylated starch nanocrystal. Carbohydrate polymers, 136, 1203-1208. https://doi.org/10.1016/j.carbpol.2015.10.025

Zhang, Y., Rempel, C., and Liu, Q. (2014). Thermoplastic Starch Processing and Characteristics—A Review. Critical Reviews in Food Science and Nutrition, 54(10), 1353–1370. https://doi.org/10.1080/10408398.2011.636156

Published
2022-08-28
How to Cite
Salgado-Delgado, A., Lozano-Pineda, E., Salgado-Delgado, R., Hernández-Uribe, J., Olarte-Paredes, A., & Granados-Baeza, M. (2022). Chemical modification of rice (Oryza sativa) and potato (Solanum tuberosum) starches by silanization with trimethoxy(methyl)silane. Revista Mexicana De Ingeniería Química, 21(3), Alim2802. https://doi.org/10.24275/rmiq/Alim2802
Section
Food Engineering

Most read articles by the same author(s)