Chemical modification of rice (Oryza sativa) and potato (Solanum tuberosum) starches by silanization with trimethoxy(methyl)silane

  • A.M. Salgado-Delgado TecNm/ Instituto Tecnológico de Zacatepec
  • E. Lozano-Pineda
  • R. Salgado-Delgado
  • J.P. Hernández-Uribe
  • A. Olarte-Paredes
  • M.J. Granados-Baeza
Keywords: Hydrophobic starch, hydrophobization, modified starch, A98 rice, trimethoxymethylsilane.


Rice starch of the A98 variety, with a denomination of origin of the state of Morelos, and potato starch were silanized to modify hydrophobicity and improve functional properties, providing added value to these starch sources and promoting their use in the formulation of biodegradable materials that require a degree of hydrophobicity, such as packaging materials. Fourier transform infrared spectroscopy analysis determined the presence of trimethoxy(methyl) silane in starch. Differential scanning calorimetry was used to determine the thermal properties and morphology was evaluated using scanning electron microscopy while changes in functional properties were assessed by identifying contact angle, swelling power, water absorption capacity, and oil absorption capacity. Hydrophobic silanized starches were obtained: Potato starch showed a contact angle of 132 ° and rice starch, 130 °. They exhibited changes in density and functionality; both swelling power and water absorption capacity were reduced in potato starch but increased in rice starch.


Ali, A., Wani, T. A., Wani, I. A., and Masoodi, F. A. (2016). Comparative study of the physico-chemical properties of rice and corn starches grown in Indian temperate climate. Journal of the Saudi Society of Agricultural Sciences, 15 (1), 75-82.

Amort, J., Hanisch, H., Klapdor, U., van der Maas, H., and Suerken, H. P. (1985). U.S. Patent No. 4,540,777. Washington, DC: U.S. Patent and Trademark Office.

Ashwar, B. A., Gani, A., Wani, I. A., Shah, A., Masoodi, F. A., and Saxena, D. C. (2016). Production of resistant starch from rice by dual autoclaving-retrogradation treatment: Invitro digestibility, thermal and structural characterization. Food Hydrocolloids, 56, 108-117.

Ashwar, B. A., Gani, A., Shah, A., and Masoodi, F. A. (2017). Physicochemical properties, in-vitro digestibility and structural elucidation of RS4 from rice starch. International journal of biological macromolecules, 105, 471-477.

ASTM D7334-08 (2013). Standard Practice for Surface Wettability of Coatings, Substrates and Pigments by Advancing Contact Angle Measurement.

Awode, A. U., Oladipo, A. A., Guran, M., Yilmaz, O., and Gazi, M. (2020). Fabrication of trichlorovinylsilane-modified-chitosan film with enhanced solubility and antibacterial activity. Polymer Bulletin, 77 (11), 5811-5824.

Bakierska, M., Molenda, M., Majda, D., and Dziembaj, R. (2014). Functional starch based carbon aerogels for energy applications. Procedia Engineering, 98, 14-19.

Bergel, B. F., da Luz, L. M., and Santana, R. M. C. (2018). Effect of poly (lactic acid) coating on mechanical and physical properties of thermoplastic starch foams from potato starch. Progress in Organic Coatings, 118, 91-96.

Bergel, B. F., Araujo, L. L., da Silva, A. L. D. S., and Santana, R. M. C. (2020). Effects of silylated starch structure on hydrophobization and mechanical properties of thermoplastic starch foams made from potato starch. Carbohydrate Polymers, 241, 116274.

Bunkerd, R., Molloy, R., Somsunan, R., Punyodom, W., Topham, P. D., and Tighe, B. J. (2018). Synthesis and Characterization of Chemically‐Modified Cassava Starch Grafted with Poly (2‐Ethylhexyl Acrylate) for Blending with Poly (Lactic Acid). Starch‐Stärke, 70 (11-12), 1800093.

Carrillo-Gallardo, R. A. (2018). Propuesta de estrategias innovadoras para la comercialización de la denominación de origen del arroz del estado de Morelos. Caso: La Perseverancia, Jojutla Morelos. Tesis de maestría en comercialización de conocimientos innovadores. Instituto De Investigación En Ciencias Básicas Y Aplicadas, UAEM. Cuernavaca, Morelos.

Castillo, D., Pérez, I., Hernández, A. A., Romero., F. J., Henríquez, R. D., Obregón V., and Rivera, J. (2010). Descripción de superficies de gránulos de almidón de variedades de arroz cubanas, por microscopía electrónica. Revista Cubana del Arroz. 12 (2), 48-56.

Chávez‐Murillo, C. E., Méndez‐Montealvo, G., Wang, Y. J., and Bello‐Pérez, L. A. (2012). Starch of diverse Mexican rice cultivars: physicochemical, structural, and nutritional features. Starch‐Stärke, 64(9), 745-756.

Chen, L., Ma, R., McClements, D. J., Zhang, Z., Jin, Z., and Tian, Y. (2019). Impact of granule size on microstructural changes and oil absorption of potato starch during frying. Food Hydrocolloids, 94, 428-438.

Cornejo-Ramírez, Y. I., Martínez-Cruz, O., Del Toro-Sánchez, C. L., Wong-Corral, F. J., Borboa-Flores, J., and Cinco-Moroyoqui, F. J. (2018). The structural characteristics of starches and their functional properties. CyTA-Journal of Food, 16 (1), 1003-1017.

El-Sabour, M. A., Mohamed, A. L., El-Meligy, M. G., and Al-Shemy, M. T. (2021). Characterization of recycled waste papers treated with starch/organophosphorus-silane biocomposite flame retardant. Nordic Pulp & Paper Research Journal, 36 (1), 108–124.

Gürler, N., Paşa, S., and Temel, H. (2021). Silane doped biodegradable starch-PLA bilayer films for food packaging applications: Mechanical, thermal, barrier and biodegradability properties. Journal of the Taiwan Institute of Chemical Engineers, 123, 261-271.

Hao, Y., Chen, Y., Xia, H., and Gao, Q. (2019). Surface chemical functionalization of starch nanocrystals modified by 3-aminopropyl triethoxysilane. International journal of biological macromolecules, 126, 987-993..

Hoover, R. (2010). The Impact of heat-moisture treatment on molecular structures and properties of starches isolated from different botanical sources. Critical Reviews in Food Science and Nutrition. 50, 835-847.

López-Carrasquero, F., Contreras, J. M., Barrios, S. E., Giammanco, G., and Laredo, E. (2017). Modificación de almidones mediante el injerto de cadenas de diferente naturaleza. Una alternativa para la obtención de materiales no contaminantes. La Revista Latinoamericana de Metalurgia y Materiales, RLMM. 7, 12-14.

Martínez-Ortiz, M. A., Vargas-Torres, A., Román-Gutiérrez, A. D., Chavarría-Hernández, N., Zamudio-Flores, P. B., Meza-Nieto, M., and Palma-Rodríguez, H. M. (2017). Partial characterization of chayotextle starch-based films added with ascorbic acid encapsulated in resistant starch. International Journal of Biological Macromolecules, 98, 341–347.

Mehling, T., Smirnova, I., Guenther, U., and Neubert, R. H. H. (2009). Polysaccharide-based aerogels as drug carriers. Journal of Non-Crystalline Solids, 355(50-51), 2472-2479.

Mohamad-Yazid, N. S., Abdullah, N., Muhammad, N., and Matias-Peralta, H. M. (2018). Application of Starch and Starch-Based Products in Food Industry. Journal of Science and Technology, 10(2).

Mohammadi, A., and Moghaddas, J. S. (2020). Mesoporous starch aerogels production as drug delivery matrices: synthesis optimization, ibuprofen loading, and release property. Turkish Journal of Chemistry, 44(3), 614-633. https://doi:10.3906/kim-1912-18

Ozturk, S., Koksel, H., Kahraman, K., and Ng, P. K. (2009). Effect of debranching and heat treatments on formation and functional properties of resistant starch from high-amylose corn starches. European Food Research and Technology, 229(1), 115-125.

Palma, H. M. (2012). Caracterización de Almidones de diferentes Fuentes tratados con Ácido para la Encapsulación de Vitamina C. Doctorado en Ciencias en Desarrollo de Productos Bióticos. Instituto Politécnico Nacional, Centro de Desarrollo de Productos Bióticos.

Piñeros-Guerrero, N., Marsiglia-Fuentes, R., and Ortega-Toro, R. (2021). Improvement of the physicochemical properties of composite materials based on cassava starch and polycaprolactone reinforced with sodium montmorillonite. Revista Mexicana De Ingeniería Química, 20(3).

Qin, Y., Liu, C., Jiang, S., Xiong, L., & Sun, Q. (2016). Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type. Industrial Crops and Products, 87, 182–190.

Qu, J., and He, L. (2013). Synthesis and properties of silane-fluoroacrylate grafted starch. Carbohydrate polymers, 98(1), 1056-1064.

Sirivongpaisal, P. (2008). Structure and functional properties of starch and flour from bambarra groundnut. Songklanakarin Journal of Science & Technology, 30.

Smits A., Ruhnau, F., Vliegenthart, J., y Van Soest, J. (1998) Ageing of starch based systems as observed with FT-IR and Solid state NMR spectroscopy. Starch/Starke. 50. 478-483.<478::AID-STAR478>3.0.CO;2-P

Tagliapietra, B. L., Felisberto, M. H. F., Sanches, E. A., Campelo, P. H., and Clerici, M. T. P. S. (2021). Non-conventional starch sources. Current Opinion in Food Science, 39, 93-102.

Trujillo-Ramírez, D., Bustos-Vázquez, M., Rodríguez-Durán, L., and Torres-de los Santos, R. (2021). Rice husk (Oryza sativa) as support in the immobilization of yeast cells. Revista Mexicana De Ingeniería Química, 21(1).

Wei, B., Sun, B., Zhang, B., Long, J., Chen, L., and Tian, Y. (2016). Synthesis, characterization and hydrophobicity of silylated starch nanocrystal. Carbohydrate polymers, 136, 1203-1208.

Zhang, Y., Rempel, C., and Liu, Q. (2014). Thermoplastic Starch Processing and Characteristics—A Review. Critical Reviews in Food Science and Nutrition, 54(10), 1353–1370.

How to Cite
Salgado-Delgado, A., Lozano-Pineda, E., Salgado-Delgado, R., Hernández-Uribe, J., Olarte-Paredes, A., & Granados-Baeza, M. (2022). Chemical modification of rice (Oryza sativa) and potato (Solanum tuberosum) starches by silanization with trimethoxy(methyl)silane. Revista Mexicana De Ingeniería Química, 21(3), Alim2802.
Food Engineering

Most read articles by the same author(s)